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1. Formating data

 presence-only data

 avoid to mix with real 
absences

 random : sampling 
potentially biased / 
non-exhaustive

 disk : geographic 
niche well sampled

 SRE : environmental 
niche well sampled
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Environment

PA 1

PA n

...

1:n



  

1. Formating data

 abundance data
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1. Formating data
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RUN k
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1:n 1:k

 simple calibration / 
validation split at the 
modeling step, and 
repeated nb.rep 
times

 k-fold : partition data 
into k sub-dataset, 
and repeated nb.rep 
times

 stratified : partition 
data into k sub-
dataset (x, y, both, 
block, env) 

 user defined

 balance : keep the 
prevalence of 
presences (or 
absences) in 
sub-dataset

25 %

25 %
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1. Formating data

Species occ
Environment

PA 1

PA n

...
RUN 1

RUN k
...

1:n 1:k

 12 types of models, 
16 single models,
11 that can use non-
binary data

 1 coded in biomod2, 
1 external software, 
13 other R packages

 default : extracted 
from functions

 bigboss : redefined 
by biomod2 team

 user-defined

user.ANN = list('_allData_allRun' =
list( size = 5,
       decay = 0.5,
       trace = FALSE,
       rang = 0.1,
       maxit = 500))



  

1. Formating data

Species occ
Environment

PA 1

PA n

...
RUN 1

RUN k
...

1:n 1:k

 12 types of models, 
16 single models,
11 that can use non-
binary data

 1 coded in biomod2, 
1 external software, 
13 other R packages

 default : extracted 
from functions

 bigboss : redefined 
by biomod2 team

 user-defined

 tuned : with train 
function from caret 
package 

 test a bunch of parameters, 
and try to keep the « best » 
according to some evaluation 
metrics (TSS or ROC)
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contingency table (containing TP, FP, TN, FN)

 require a binary transformation :

 range of thresholds tested
 keep thresold optimising the evaluation metric



  

2.a Single models
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PA 1

PA n

...
RUN 1

RUN k
...

GLM

RF
...
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 comparison of importance of variables between models

 Pearson correlation between : 

 normal prediction
 prediction with 1 variable randomised
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 residuals ~ f(observations number)

 visualize the potential outliers

 x-axis only helps to find the outlier number
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 standardized residuals ~ f(theoretical quantiles)

 Q-Q plot to assess if residuals follow a normal distribution
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 residuals distribution

 histogram to assess if residuals follow a normal distribution



  

3.a Exploring single models
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...
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 residuals ~ f(fitted values)

 Tukey-Anscombe plot to detect heteroscedasticity

 meaning residuals do not have a constant variance
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 « evaluation space »

 visualize the metrics consistency between models
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...

Sp_PAn_RUNk_RF

...

 more classical view

 visualize the metrics consistency between models

 explore the different levels of subsets

1:n * k * 11
Sp_PA1_RUN1_GLM



  

3.a Exploring single models
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PA 1
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...
RUN 1
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...
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1:n 1:k 1:11
Sp_PA1_RUN1_GLM

Sp_PA1_RUN1_RF
...

Sp_PAn_RUNk_RF

...

1:n * k * 11

 compare importance of variables between models

 visualize the consistency between models 
(and different types of models)



  

3.a Exploring single models

Species occ
Environment

PA 1

PA n

...
RUN 1

RUN k
...

GLM

RF
...

1:n 1:k 1:11
Sp_PA1_RUN1_GLM

Sp_PA1_RUN1_RF
...

Sp_PAn_RUNk_RF

...

1:n * k * 11

 better understand the effect of each variable along its 
gradient onto the probability of presence

 visualize the consistency between models 
(and different types of models)
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 transformation associated to one evaluation metric
(one map created for each metric selected)

 use the threshold maximising the chosen metric
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2.b Ensemble models

Step 1 : filter single models

 filtering associated to one evaluation metric
(one set of ensemble models created for each metric 
selected)

 use a threshold to keep single models 
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Step 1 : filter single models
Step 2 : gather single models
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2.b Ensemble models

Step 1 : filter single models
Step 2 : gather single models
Step 3 : build ensemble models

 « simple » ensemble models : mean or median 
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2.b Ensemble models

Step 1 : filter single models
Step 2 : gather single models
Step 3 : build ensemble models

 « simple » ensemble models : mean or median 

 « complex » ensemble models :
 probability weighted mean

W1 * +    W3 *+    W2 *
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2.b Ensemble models

Step 1 : filter single models
Step 2 : gather single models
Step 3 : build ensemble models

 « simple » ensemble models : mean or median 

 « complex » ensemble models :
 probability weighted mean
 committe averaging

0,45   0,01

0,12   0,77  

0,30    0,5

   0,10  0,77  

 0,15   0,23

   0,25    0,64  
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2.b Ensemble models

Step 1 : filter single models
Step 2 : gather single models
Step 3 : build ensemble models

 « simple » ensemble models : mean or median 

 « complex » ensemble models :
 probability weighted mean
 committe averaging

 « exploratory » ensemble models :
 confidence intervals or coefficient of variation 
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2.b Ensemble models

Step 1 : filter single models
Step 2 : gather single models
Step 3 : build ensemble models

 « simple » ensemble models : mean or median 

 « complex » ensemble models :
 probability weighted mean
 committe averaging

 « exploratory » ensemble models :
 confidence intervals or coefficient of variation 
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2.b Ensemble models

Step 1 : filter single models
Step 2 : gather single models
Step 3 : build ensemble models

 « simple » ensemble models : mean or median 

 « complex » ensemble models :
 probability weighted mean
 committe averaging

 « exploratory » ensemble models :
 confidence intervals or coefficient of variation 

 « multiclass » ensemble models :
 mode or frequency of the mode 
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2.b Ensemble models

Step 1 : filter single models
Step 2 : gather single models
Step 3 : build ensemble models

 « simple » ensemble models : mean or median 

 « complex » ensemble models :
 probability weighted mean
 committe averaging

 « exploratory » ensemble models :
 confidence intervals or coefficient of variation 

 « multiclass » ensemble models :
 mode or frequency of the mode 
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0,45   0,01

0,12   0,77  

0,30    0,5

   0,10  0,77  

 0,15   0,23

   0,25    0,64  

 0,33    0,33

   0,33      1     
freq

A        B 

C        B 

A        D 

A        B 

D        B 

C        B 



  

2.b Ensemble models  except ROC, all evaluation metrics obtained from 
contingency table (containing TP, FP, TN, FN)

 require a binary transformation :

 range of thresholds tested
 keep thresold optimising the evaluation metric
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2.b Ensemble models  comparison of importance of variables between models

 Pearson correlation between : 

 normal prediction
 prediction with 1 variable randomised

← Takes time ! Has to go through the whole workflow → 
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3.b Exploring ensemble models
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4.b Projecting ensemble models

Species occ
Environment

PA 1

PA n

...
RUN 1

RUN k
...

GLM

RF
...

1:n 1:k 1:11
Sp_PA1_RUN1_GLM

Sp_PA1_RUN1_RF
...

Sp_PAn_RUNk_RF

...

Sp_Merged_ProbWeightedMean

Sp_Merged_CommitteeAveraging
...

1:n * k * 11



  

4.b Projecting ensemble models  transformation associated to one evaluation metric
(one map created for each metric selected)

 use the threshold maximising the chosen metric

Species occ
Environment

PA 1

PA n

...
RUN 1

RUN k
...

GLM

RF
...

1:n 1:k 1:11
Sp_PA1_RUN1_GLM

Sp_PA1_RUN1_RF
...

Sp_PAn_RUNk_RF

...

Sp_Merged_ProbWeightedMean

Sp_Merged_CommitteeAveraging
...

1:n * k * 11



  

5. Species range change

Species occ
Environment

PA 1

PA n

...
RUN 1

RUN k
...

GLM

RF
...

1:n 1:k 1:11
Sp_PA1_RUN1_GLM

Sp_PA1_RUN1_RF
...

Sp_PAn_RUNk_RF

...

Sp_Merged_ProbWeightedMean

Sp_Merged_CommitteeAveraging
...

1:n * k * 11



  

5. Species range change

Work with binary maps (and not predictions between 0 and 1)

 explore spatially the difference in predictions

 provide summary values :

 percentage of loss / gain
 species range change

Species occ
Environment

PA 1

PA n

...
RUN 1

RUN k
...

GLM

RF
...

1:n 1:k 1:11
Sp_PA1_RUN1_GLM

Sp_PA1_RUN1_RF
...

Sp_PAn_RUNk_RF

...

Sp_Merged_ProbWeightedMean

Sp_Merged_CommitteeAveraging
...

1:n * k * 11



  

6. Report / ODMAP / code

Species occ
Environment

PA 1

PA n

...
RUN 1

RUN k
...

GLM

RF
...

1:n 1:k 1:11
Sp_PA1_RUN1_GLM

Sp_PA1_RUN1_RF
...

Sp_PAn_RUNk_RF

...

Sp_Merged_ProbWeightedMean

Sp_Merged_CommitteeAveraging
...

1:n * k * 11



  

6. Report / ODMAP / code  report : provide all possible prints, summaries, results and 
plots from a biomod2 object

Species occ
Environment

PA 1

PA n

...
RUN 1

RUN k
...

GLM

RF
...

1:n 1:k 1:11
Sp_PA1_RUN1_GLM

Sp_PA1_RUN1_RF
...

Sp_PAn_RUNk_RF

...

Sp_Merged_ProbWeightedMean

Sp_Merged_CommitteeAveraging
...

1:n * k * 11



  

6. Report / ODMAP / code  report : provide all possible prints, summaries, results and 
plots from a biomod2 object

 ODMAP : pre-fill ODMAP protocol following Zurell et al. 
2020 with biomod2 modelling elements

Species occ
Environment

PA 1

PA n

...
RUN 1

RUN k
...

GLM

RF
...

1:n 1:k 1:11
Sp_PA1_RUN1_GLM

Sp_PA1_RUN1_RF
...

Sp_PAn_RUNk_RF

...

Sp_Merged_ProbWeightedMean

Sp_Merged_CommitteeAveraging
...

1:n * k * 11
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6. Report / ODMAP / code  report : provide all possible prints, summaries, results and 
plots from a biomod2 object

 ODMAP : pre-fill ODMAP protocol following Zurell et al. 
2020 with biomod2 modelling elements

 code : provide command lines used to call main functions

Species occ
Environment

PA 1

PA n

...
RUN 1

RUN k
...

GLM

RF
...

1:n 1:k 1:11
Sp_PA1_RUN1_GLM

Sp_PA1_RUN1_RF
...

Sp_PAn_RUNk_RF

...

Sp_Merged_ProbWeightedMean

Sp_Merged_CommitteeAveraging
...

1:n * k * 11
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https://github.com/biomodhub/biomod2/

https://biomodhub.github.io/biomod2/

Species distribution modeling, 
calibration and evaluation, 

ensemble modeling 

https://github.com/biomodhub/biomod2/
https://biomodhub.github.io/biomod2/
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