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1. Formating data
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1. Formating data

BIOMOD_FormatingData
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1. Formating data

presence-only data

avoid to mix with real
absences

random : sampling
potentially biased /
non-exhaustive
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1. Formating data

BIOMOD_FormatingData
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1. Formating data
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1. Formating data

BIOMOD_FormatingData
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1. Formating data

BIOMOD_FormatingData

g o PRESENCE PRESENCE RANDOM
¥ A SR S !
A &5 ABSENCE ONLY :
A~ ) 0 ot
& & & 3 &
% & i no=
L S =0
] } = m 1:1
] M = < SRE
Bl = EE £  ABUNDANCE ORDINAL < o -
] | - %
1 Pom g . noO= .
2 P H & .@ ' < ¢
» ordinal data L 2
n It !
Rl
1 I

/

Species occ
Environment




1. Formating data

s p— ————————— ——— —
» simple calibration / /
validation split at the | RANDOM K—-FOLD
modeling step, and | ‘
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1. Formating data

simple calibration / /
validation split at the
modeling step, and
repeated nb.rep

times

into k sub-dataset,
and repeated nb.rep

[

I
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I

k-fold : partition data |
I
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I

I

Species occ
Environment

RANDOM

70 %

30 %

STRAT

1n

1:k

PA 1

RUN1 |

PA N

N

RUNK |

ENV

bm_CrossValidation

MODELSTABLE
OpTIONSBIGBOSS

PARAMETERS
(+ FORMULA + STEPAIC)



1. Formating data

»
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»

simple calibration /
validation split at the
modeling step, and
repeated nb.rep
times

k-fold : partition data
into k sub-dataset,
and repeated nb.rep
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stratified : partition
data into k sub-
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1. Formating data
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simple calibration /
validation split at the
modeling step, and
repeated nb.rep
times

k-fold : partition data
into k sub-dataset,
and repeated nb.rep
times

stratified : partition
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user defined
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1. Formating data
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simple calibration /
validation split at the
modeling step, and
repeated nb.rep
times

k-fold : partition data
into k sub-dataset,
and repeated nb.rep
times

stratified : partition
data into k sub-
dataset (X, y, both,
block, env)

user defined

balance : keep the
prevalence of
presences (or
absences) in
sub-dataset
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1. Formating data

» 12 types of models,
16 single models,
11 that can use non-
binary data

» 1 coded in biomod2,
1 external software,
13 other R packages

1:n 1:k
. RUN 1
Species occ
Environment —
RUN k

v

model
ANN
CTA
DNN
FDA
GAM
GAM
GAM
GBM
GLM
MARS
MAXENT
MAXNET
RF

RFd
SRE

(=, I - PV VI

o~

27 XGBOOST

ModelsTable

type
binary
binary
binary
binary
binary
binary
binary
binary
binary
binary
binary
binary
binary
binary
binary
binary

nonbinary
nonbinary
nonbinary
nonbinary
nonbinary
nonbinary
nonbinary
nonbinary
nonbinary
nonbinary
nonbinary

MODELSTABLE
OpTIONSBIGBOSS

package

nnet

rpart

cito

mda

EL

mgcv

mgev

gbm

stats

earth

MAXENT

maxnet

randomForest
randomF

b

xgboost

rpart

cito

mda

gam

mgev

mgcv

gbm

stats

earth

randomForest

xgboost

func

nnet

rpart

dnn

fda

EL]

LEL]

EL]

gbm

glm

earth

MAXENT
maxnet
randomForest
randomForest

earth
randomForest

train
avhNet
rpart
tune

fda
gamLoess
bam

LEL

gbm

glm
earth
ENMevaluate
maxnet
rf

rf
bm_SRE
xgbTree
rpart
tune

fda
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earth
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1. Formating data

nnet package:nnet R Documentation
it

F

Neural Netwo

» 12 types of models,

16 Slngle mOdels’ Fit single-hidd 1 1 t k ibl ith skip-1
1 s1in e-ni en-Layer neura network, 0551 Wl SK1p- Layer
11 that can use non- Comnections. lcnraver ne ¢ P / priave

binary data
Usage:

» 1 coded in biomod2, @

Description:

MODELSTABLE
OpTIONSBIGBOSS

1 external SOftware, ## 53 method for class 'formula'
nnet(formula, data, weights, 5
13 Other R paCkageS subset, na.action, contrasts = NULL)

ModelsTable

## Default S3 method: model type package func train

» default : extracted nnet(x, vy, weights, size, Wts, mask, ’:?: E}Eg;y rngi r"gf; a:“gf;
from f ; linout = FALSE, entropy = FALSE, softmax = FALSE, Lnary pa P part
unctions DNN binary cito dnn tune

censored = FALSE, skip = FALSE, rang = 0.7, decay = 0,
maxit = 100, Hess = FALSE, trace = TRUE, MaxNWts = 1000,
abstol = 1.0e-4, reltol = 1.0e-8, ...)

FDA binary mda fda fda

GAM binary EL EL gamLoess
GAM binary mgcv LEL bam
GAM binary mgcv EL EL
GBM binary gbm gbm gbm
GLM binary stats glm glm
MARS binary earth earth earth
MAXENT binary MAXENT MAXENT ENMevaluate
MAXNET binary maxnet maxnet maxnet
RF binary randomForest randomForest rf

RFd binary randomForest randomForest rf
SRE binary biomod2 bm_SRE bm_SRE
XGBOOST binary xgboost xgboost xgbTree
CTA nonbinary rpart rpart rpart
DNN nonbinary cito dnn tune

FDA nonbinary mda fda fda

GAM nonbinary gam EL gamLoess
GAM nonbinary mgcv bam bam

1n 1:k GAM nonbinary mgcv EL SEL
nonbinary gbm gbm gbm

RUN1 nonbinary stats glm glm
S nonbinary earth earth earth
RUN k 6 nonbinary randomForest randomForest rf
27 XGBOOST nonbinary xgboost xgboost xgbTree

Species occ
Environment




1. Formating data

nnet package:nnet R Documentation
it

F

Neural Networks

» 12 types of models,

16 Slngle mOdels’ Fit single-hidd 1 1 t k ibl ith skip-1
1 s1in e-ni en-Layer neura network, 0551 Wl SK1p- Layer
11 that can use non- Comnections. lcnraver ne ¢ P / priave

binary data )
USBQ H

» 1 coded in biomod2, @

Description:

MODELSTABLE
OpTIONSBIGBOSS

1 external SOftware, ## 53 method for class 'formula'
nnet(formula, data, weights, ...,
13 Other R paCkageS subset, na.action, contrasts = NULL)

ModelsTable
model type package func train
ANN binary nnet nnet avNNet
CTA binary rpart rpart rpart
DNN binary cito dnn tune
FDA binary mda fda fda
GAM binary EL EL gamLoess
GAM binary mgcv LEL bam
GAM binary mgcv EL EL

v

. ## Default S3 method:
» default : extracted nnet(x, vy, weights, size, Wts, mask,
H linout = FALSE, entropy = FALSE, softmax = FALSE,
from funCtlonS censored = FALSE, skip = FALSE, rang = 0.7, decay = 0,
maxit = 100, Hess = FALSE, trace = TRUE, MaxNWts = 1000,
abstol = 1.0e-4, reltol = 1.0e-8, ...)

» bigboss : redefined

1
2
=
4
5
6
7
8

1 (d:1] binary gbm gbm gbm
by b|0m0d2 team > : GLM binary stats glm glm
i MARS binary earth earth earth
(default: 2 ) MAXENT binary MAXENT MAXENT ENMevaluate
MErEaber LIl MAKN:II 5122? rand)mpz}:r’\i rand)m??r“":i maxm:wz
op = i . ls ore C ore
trace = FALSE (default: NULL RFd bi.narg randomForest randomForest rf
rang = 0.1  (default: NULL ) SRE  binary biomod2 bm_SRE bm_SRE
axit = 200 (default: NU XGBOOST binary xgboost xgboost xgbTree
CTA nonbinary rpart rpart rpart
DNN nonbinary cito dnn tune
FDA nonbinary mda fda fda
GAM nonbinary gam EL gamLoess
GAM nonbinary mgcv bam bam
1n 1:k GAM nonbinary mgcv EL SEL

nonbinary gbm gbm gbm

RUN1 nonbinary stats glm glm
S nonbinary earth earth earth
RUN k nonbinary randomForest randomForest rf
27 XGBOOST nonbinary xgboost xgboost xgbTree

Species occ
Environment




1. Formating data

nnet package:nnet R Documentation
it

F

Neural Networks
» 12 types of models,
16 single models, e _ _ _ _
1 that can use non- E;Enzzggéi;\ldden—layer neural network, possibly with skip-layer
binary data

Description:

MODELSTABLE
OpTIONSBIGBOSS

Usag

» 1 coded in biomod2,

1 external SOftWare’ ## 53 method for class 'formula'
nnet(formula, data, weights, ...,
13 Other R paCkageS subset, na.action, contrasts = NULL)
> ModelsTable
. ## Default S3 method: _ model _type prElEs func Erily
» default : extracted nnet(x, y, weights, size, Wts, mask, ; ‘:2: 2122;5 r:g:’; rggi; a:::g:—;
from functions l}nout._: EAL‘:‘Eti E-ntlzn_)py_: lr:ALt‘E, softTax = FA[_:‘E, _ B 3T ey cito dnn tune
censored = FALSE, skip = FALSE, rang = 6.7, decay = @, 4 FDA binary . fda fda
maxit = 100, Hess = FALSE, trace = TRUE, MaxNWts = 1000, 5 GAM binary gam gam gamLoess
H . abstol = 1.0e-4, reltol = 1.0e-8, ...) 6 GAM binar mgcv bam bam
» . ? ’ y g
blgboss . redeflned T GAM binary mgcv EL EL
1 8 (d:1] binary gbm gbm gbm
by b|0m0d2 team = : GLM binary stats glm glm
i MARS binary earth earth earth
- (default: 2 ) 1 MAXENT binary MAXENT MAXENT ENMevaluate
» user'deflned (default: NULL ) ] MAXNET binary maxnet maxnet maxnet

S calc i - RF binary randomForest randomForest rf
trace = F‘TJ'L"E _(dCfaU]‘t' NULL RFd binary randomForest randomForest rf
rang = 0.1  (default: NULL ) SRE  binary biomod2 bm_SRE bm_SRE
axit = 200 (default: NU 16 XGBOOST binary xgboost xgboost xgbTree
1 CTA nonbinary rpart rpart rpart

] DNN nonbinary cito dnn tune

user.ANN = list(' allData_allRun' = : FDA nonginary mda fda fda

GAM nonbinar anm am amLoess

Size = 5! GAM nonbi.nari mgcv Eam ° bam
decay: 05, GAM nonbinary mgcv gam gam
_ nonbinary gbm gbm gbm
trace = FALSE’ nonbinary stats glm glm
rang = 0. 1, S nonbinary earth earth earth
L nonbinary randomForest randomForest rf
maxit = 500) 27 XGBOOST nonbinary xgboost xgboost xgbTree

Species occ
Environment
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1. Formating data

12 types of models,
16 single models,

11 that can use non-
binary data

1 coded in biomod2,
1 external software,
13 other R packages

default : extracted
from functions

bigboss : redefined
by biomod2 team

user-defined
tuned : with train

function from caret
package

1n

Species occ
Environment

1:k
RUN 1

RUN k

» test a bunch of parameters,
and try to keep the « best »
according to some evaluation
metrics (TSS or ROC)

v

model
ANN
CTA
DNN
FDA
GAM
GAM
GAM
GBM
GLM
MARS
MAXENT
MAXNET
RF

RFd
SRE

16 XGBOOST
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DNN

FDA

GAM

GAM

GAM

GBM

GLM

MARS

6 RF
27 XGBOOST
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ModelsTable

type
binary
binary
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binary
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binary
binary
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binary
binary
binary
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nonbinary

MODELSTABLE
OpTIONSBIGBOSS

package

nnet

rpart
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EL
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mgev

gbm

stats

earth

MAXENT
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xgboost
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cito
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gam

mgev
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stats

earth
randomForest
xgboost

func

nnet

rpart

dnn

fda

EL]

LEL]

EL]
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earth

MAXENT
maxnet
randomForest
randomForest
bm_SRE
xgboost
rpart

dnn

fda

EL]

LEL

EL]

gbm
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earth
randomForest

PARAMETERS
(+ FORMULA + STEPAIC)
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LEL
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earth
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xgbTree
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2.a Single models

BIOMOD_Modeling
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2.a Single models

BIOMOD_Modeling

ANN CTA VAR.IMPORT

DNN FDA GAM

GBM GLM MARS

- BOYCE MPA
MAXENT| |MAXNET SRE =

BM.FORMAT
BM.OPTIONS

Isquared
uared_aj Max_error

XG
RF RFd | | 58S

Accuracy Recall Precision F1
K MODELS * CV.NB.REP /

1n 1:k 1:11 Iin*k*11

PA1 RUN 1 GLM |—| Sp_PA1_RUN1_GLM
Species occ P = ]
Environment

PAN RUNK | RF | Sp_PAL_RUNLRF |

Sp_PAn_RUNK_RF |




2.a Sing|e models » except ROC, all evaluation metrics obtained from
contingency table (containing TP, FP, TN, FN)

» require a binary transformation :

+ range of thresholds tested
+ keep thresold optimising the evaluation metric

BIOMOD_Modeling

s T T T
! - .
ANN CTA I POD FAR POFD SR VAR.IMPORT
ACCURACY BIAS
l 5
L 0 DNN FDA GAM [ =) AUCroc AUCprg TS5 &
< EZ N KAPPA OR ORSS CSl ETS £
£ GBM | | GLM | | MARs I 8
2 & I v BOYCE MPA Q
P =
= 2 MAXENT| |MAXNET| | SRE I & i
mm | 4 RMSE MSE MAE Rsquared £
XG I Rsquared_aj Max_error S
RF RFd | | pdS |

| Accuracy Recall Precision F1
K MODELS * CV.NB.REP / \\

— e E— o —

1:n 1:k 1:11 lin*k*11
PA1 RUN 1 GLM | Sp_PAL_RUN1 GLM
p_ h : ]
Environment
PAN RUNK | RF | Sp_PAL_RUNLRF |
Sp_PAn_RUNK_RF |




2.a Single models » comparison of importance of variables between models

» Pearson correlation between :

+ normal prediction
+ prediction with 1 variable randomised

BIOMOD_Modeling

ANN CTA | VAR.IMPORT

| d
[1)] DNN FDA GAM J AUCroc AUCprg TSS l g
< Z ] <APPA OR ORSS CS| ETS | 8
z 5 GBM || GLM || MARS E | £
2 & ) BOYCE MPA | L
= 5 |MAXENT| |MAXNET| | SRE o | =
I =] | . S
1
RF RFd | | a8 | E

I

\

Accuracy Recall Precision F1
k MODELS * CV.NB.REP /
S

— e ——

1:n 1:k 1:11 lin*k*11
PA1 RUN 1 GLM | Sp_PAL_RUN1 GLM
p_ ; : ]
Environment
PAN RUNK | RF | Sp_PAL_RUNLRF |
Sp_PAn_RUNK_RF |




3.a Exploring single models

B C D
/ Visualizing residuals: are there any outliers? ® Q-0 plot of residuals © Distribution of residuals © Residuals ~ Fitted values (Tukey-Anscombe plot)

ilo_alDaia alRu  alDsts alRun ulo slData alR 4o aliDeta allRu

= (e

|
| o
L]
| aiData_atfun_ io_abDeia_FUN _siiData_RIN1_ uio_siiData_FUN . =
“ S
I | | .L'"'s GLM <
I T.: f‘: . .r\ = MAXENT %
I g ua_nnu_m _sADsin_PUNY_: do_aliDats_RUM \_ siDein_PUNE_ g - B :Ed =
I | N * XGBOOST EQ

~.
: / S S S [
I e - 2 Wi _siDam AUt ylo_BIDsm ALK aliDem ALRE | . - E
| ﬁa‘l 1 = g
s .
i ]

AL T H I
R bl I S
\ Al 1 L s | \

\ Observations number Theoretical quantiles Residuals Fitted values
e e R R R R I R R R R I R R R R R R R R I —————————————,...
1:n 1:k 1:11 Iin*k*11
PA1 RUN 1 GLM |—| Sp_PA1 RUN1_GLM
Species occ e = ]
Environment
PAN RUNK | RF | Sp_PAL RUNLRF |

Sp_PAn_RUNK_RF |




3.a Exploring single models » residuals ~ f(observations number)

» visualize the potential outliers

+ x-axis only helps to find the outlier number

ysis

Residuals
3]
s - 8

s
<
<
Y
S
s
kS

1:n 1k 1:11 Iin*k*11
PA1 RUN 1 GLM Sp_PA1_RUN1_GLM
e
Environment
PAN RUNK | RF — Sp_PAL_RUNLRF |
Sp_PAn_RUNK_RF |




3.a Exploring single models » standardized residuals ~ f(theoretical quantiles)

» Q-Q plot to assess if residuals follow a normal distribution

P — — — — — — — — — — B— ———————————————————————————————
/ ®) Q-Q plot of residuals
I
| 0
| 2
| S
| | <
2 i
=
: / £
| - =
\ L
N Theoretical quantiles
e e e e e e e e e e e e e e e e e e e e e e e e — — —

1:n 1k 1:11 Iin*k*11
PA1 RUN 1 GLM Sp_PA1_RUN1_GLM
e
Environment
PAN RUNK | RF — Sp_PAL_RUNLRF |
Sp_PAn_RUNK_RF |




3.a Exploring single models » residuals distribution

» histogram to assess if residuals follow a normal distribution

C
/ © Distribution of residuals
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3.a Exploring single models » residuals ~ f(fitted values)

» Tukey-Anscombe plot to detect heteroscedasticity

+ meaning residuals do not have a constant variance
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3.a Exploring single models » « evaluation space »

» visualize the metrics consistency between models
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3.a Exploring single models » more classical view

» visualize the metrics consistency between models
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3.a Exploring single models » more classical view

» visualize the metrics consistency between models

+ explore the different levels of subsets
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3.a Exploring single models » compare importance of variables between models

» visualize the consistency between models
(and different types of models)
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3.a Exploring single models » better understand the effect of each variable along its
gradient onto the probability of presence

» visualize the consistency between models
(and different types of models)
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4.a Projecting single models

BIOMOD_Projection

Species occ
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4.3 Projecting single models » transformation associated to one evaluation metric
(one map created for each metric selected)

» use the threshold maximising the chosen metric

BIOMOD_Projection
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2.b Ensemble models

BIOMOD_EnsembleModeling
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2.b Ensemble models » filtering associated to one evaluation metric
(one set of ensemble models created for each metric

selected)

Step 1 : filter single models

» use a threshold to keep single models

BIOMOD_EnsembleModeling
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2.b Ensemble models

Step 1 : filter single models
Step 2 : gather single models

BIOMOD_EnsembleModeling
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BM.MOD
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» different ways of combining single models together :
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2.b Ensemble models

all
Step 1 : filter single models algo
Step 2 : gather single models PA
PA+algo
PA+run

BIOMOD_EnsembleModeling

» different ways of combining single models together :

. PA run algo
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2.b Ensemble models

Step 1 : filter single models
Step 2 : gather single models

BIOMOD_EnsembleModeling
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» different ways of combining single models together :
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2.b Ensemble models

Step 1 : filter single models
Step 2 : gather single models

BIOMOD_EnsembleModeling
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» different ways of combining single models together :

+ all
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+ PA
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2.b Ensemble models

Step 1 : filter single models
Step 2 : gather single models

BIOMOD_EnsembleModeling
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2.b Ensemble models

Step 1 : filter single models

Step 2 : gather single models

BM.MOD

BIOMOD_EnsembleModeling
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2.b Ensemble models » « simple » ensemble models : mean or median

Step 1 : filter single models
Step 2 : gather single models
Step 3 : build ensemble models

BIOMOD_EnsembleModeling
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2.b Ensemble models » « simple » ensemble models : mean or median

» « complex » ensemble models :
Step 1: filter Single models . probabi"ty Weighted mean
Step 2 : gather single models
Step 3 : build ensemble models

BIOMOD_EnsembleModeling
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2.b Ensemble models » « simple » ensemble models : mean or median

» « complex » ensemble models :
Step 1: filter Single models . probabmty We|ghted mean
Step 2: gather Single models «  committe averaging
Step 3 : build ensemble models

BIOMOD_EnsembleModeling

EM.BY run | algo | \
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2.b Ensemble models » « simple » ensemble models : mean or median

» « complex » ensemble models :
Step 1: filter Single models . probabmty We|ghted mean
Step 2: gather Single models +« committe averaging
Step 3 : build ensemble models

» « exploratory » ensemble models :
+ confidence intervals or coefficient of variation
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2.b Ensemble models

Step 1 : filter single models
Step 2 : gather single models
Step 3 : build ensemble models

BIOMOD_EnsembleModeling
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1 GLM

GLM

BM.MOD

EMcv |

MODELS .CHOSEN
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« simple » ensemble models : mean or median
« complex » ensemble models :

+ probability weighted mean

+ committe averaging

« exploratory » ensemble models :
+ confidence intervals or coefficient of variation

Coefficient of variation

Sp_Merged_ProbWeightedMean ]

Sp_Merged_CommitteeAveraging |




2.b Ensemble models

Step 1 : filter single models
Step 2 : gather single models
Step 3 : build ensemble models

BIOMOD_EnsembleModeling

EM.BY run | algo | \
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« simple » ensemble models : mean or median

« complex » ensemble models :
+ probability weighted mean
+ committe averaging

« exploratory » ensemble models :
+ confidence intervals or coefficient of variation

« multiclass » ensemble models :
+ mode or frequency of the mode
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2.b Ensemble models » « simple » ensemble models : mean or median

» « complex » ensemble models :
Step 1: filter Single models . probabmty We|ghted mean
Step 2: gather Single models +« committe averaging
Step 3 : build ensemble models

» « exploratory » ensemble models :
+ confidence intervals or coefficient of variation

BIOMOD_EnsembleModeling

» « multiclass » ensemble models :
\ + mode or frequency of the mode
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2.b Ensemble models » except ROC, all evaluation metrics obtained from
contingency table (containing TP, FP, TN, FN)

» require a binary transformation :

+ range of thresholds tested
+ keep thresold optimising the evaluation metric

BIOMOD_EnsembleModeling

\ P
i f
| EMmedian | POD FAR POFD SR
A 1 GLM o I ACCURACY BIAS
A 1 RF | — | | S
=z B ~
g | EMwmean | = AUCroc AUCprg TSS &
n o A 2 GLM = KAPPA OR ORSS CSI ETS IS
a o J | m =
288 L a2 owmoy LB ] ' 5
s | B BOYCE MPA
=29 [ EMci | |2 T
/0 d = B 1 GLM E it
a & RMSE MSE MAE Rsquared !
o M B 1 RF =< | EMcv | o= Rsquared_aj Max_error g
= = [
B 2 GWM | EMmode | |
Accuracy Recall Precision F1
\ A : 2 RF | EMfreq |/ \
~

1:n 1k 1:11 In*k*11
] PA1 RUN 1 GLM — Sp_PA1_RUN1_GLM Sp_Merged_ProbWeightedMean |
Species occ
Environment
PAN RUNK | RF 1 Sp_PAL_RUNI_RF Sp_Merged_CommitteeAveraging |
Sp_PAn_RUNK_RF




2.b Ensemble models » comparison of importance of variables between models

» Pearson correlation between :

+ normal prediction
+ prediction with 1 variable randomised

BIOMOD_EnsembleModeling
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4.b Projecting ensemble models

BIOMOD_EnsembleForecasting
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4.b Projecting ensemble models

BIOMOD_EnsembleForecasting
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Environment
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» transformation associated to one evaluation metric
(one map created for each metric selected)

» use the threshold maximising the chosen metric

045 0.01

‘ 0.12 0.77

<
i)
=
S
METRIC.BINARY S
=
1 0 2
0 1 =
-
S
METRIC.FILTER {5
|
s
045 0 s
0 077
N —

PA 1

Sp_Merged_ProbWeightedMean IFﬁ

PAN

\

Sp_Merged_Corr.\.r.nitteeAveraging ] W[_.

RUN 1 GLM —{ Sp_PA1_RUN1_GLM
Sp_PA1l_RUN1_RF

Sp_PAn_RUNK_RF




5. Species range change

BIOMOD_RangeSize

PROJ. PROJ.
CURRENT FUTURE

Present in current, Absent in current,
PROJ.FUTURE - ost in future absent in future
2 * PROJ.CURRENT Present in current, Absent in current,

\ / present in future gained in future

1n 1:k 1:11 lin*k*11 Ih
PA1 RUN 1 GLM Sp_PAl1_RUN1_GLM Sp_Merged_ProbWeightedMean
—1_Sp_PAL RUNL p_Merged | g ) .
Environment
UN k Sp_PA1_RUN1_RF Sp_Merged_CommitteeAveraging | | I.

PAN R ] RF —
Sp_PAn_RUNK_RF




5. Species range change » explore spatially the difference in predictions

» provide summary values :

+ percentage of loss / gain
+ species range change

BIOMOD_RangeSize

PROJ. PROJ.
CURRENT FUTURE

PROJ.FUTURE -
2 * PROJ.CURRENT Present in current, Absent in current,
present in future gained in future

\ / ______________ —
I ! IMPORTANT Work with binary maps (and not predictions between 0 and 1)

1:11 1n*k*11 Ih
PA 1 RUN 1 GLM |—| Sp_PA1_RUN1_GLM Sp_Merged_ProbWeightedMean |
Speues occ = P g l
Enwronment
RUN k Sp_PA1_RUN1_RF Sp_Merged_CommitteeAveraging | II.
Sp_PAn_RUNk_RF

geSize

Absent in current,

-2 Present in current, |
absent in future

lost in future

bm_PlotRan




6. Report / ODMAP / code

BIOMOD_Report

pohuobiina RO ODMAP

¥y Ensemble models

.

1n 1:k 1:11 lin*k*11 I
PA1 RUN 1 GLM |—| Sp_PAl1_RUN1_GLM Sp_Merged_ProbWeightedMean .l.
— — IF
Environment
PAN RUNK | RF 1 Sp_PAL_RUNI_RF Sp_Merged_CommitteeAveraging | II.
Sp_PAn_RUNK_RF




6. Report / ODMAP / code » report : provide all possible prints, summaries, results and
plots from a biomod2 object

file path type level D
. GuloGulo/GuloGulo.AllModels.models.out GuloGulo models single AllModels
b i o m 0 d 2 = M O d e l I n g G u lo G u lo - re po rt GuloGulo/GuloGulo.AllModels.ensemble.models.out GuloGulo models ensemble AllModels
Last compiled on 10 décembre, 2025 GuloGulo/proj_Current/GuloGulo.Current.projection.out GuloGulo/proj_Current projection single Current
« =Formated data GuloGulo/proj_Future/GuloGulo.Future.projection.out GuloGulo/proj_Future projection single Future
° *S‘nglf To‘de}s fon GuloGulo/proj_Current/GuloGulo.Current.ensemble.projection.out GuloGulo/proj_Current projection ensemble Current
: E\i\:,‘tn‘:‘ ?D o B ! OMOD Repo rt GuloGulo/proj_CurrentEM/GuloGulo.CurrentEM.ensemble.projection.out GuloGulo/proj_CurrentEM  projection ensemble CurrentEM

o Variables' imp

ponse curves

Y= Formated data

The GuloGulo species dataset contains 2488 points.

« #g Ensemble models

o Evaluatior

o Variables

The GuloGulo species dataset contains 661 presences and 1827 true absences.

© Response
« @ Projections

77777777777777777 =-=-= BIOMOD.formated.data -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=

Modeling directory (dir.name) : /home/gueguema/Documents/ PACKAGES/biomod2
Modeled species (sp.name) : GuloGulo

661 presences, 1827 true absences and 0 undefined points in dataset

5 explanatory variables

bio3 bio4 bio7 biol2
Min. :10.19  Min. B 72 Min. 1 54.5 Min. B 0.0278
#, Ensemble m 1st Qu.:21.22 1st Qu.: 2641 1st Qu.:186.0 1st Qu.: 276.4931
” o Median :35.00 Median : 6682 Median :306.2 Median : 562.93608
Mean  :40.29 Mean : 7358 Mean :310.9 Mean : 853.5157
3rd Qu.:56.35 3rd Qu.:11752  3rd Qu.:424.6 3rd Qu.:1200.5915
Max. :92.00  Max. 122314 Max. :718.0 Max. :5431.0020
dataset run PA Presences True_Absences Pseudo_Absences Undefined
initial NA NA 661 1827 0 0

! Evaluation data is missing, plot.eval set to FALSE

1n 1:k 1:11 lin*k*11
PA 1 RUN 1 GLM ]—[ Sp_PAl1_RUN1_GLM Sp_Merged_ProbWeightedMean ] I |

Species occ
Environment

PAN RUNK | RF — Sp_PAl_.I;UNl_RF Sp_Merged_Corr.\.r.nitteeAveraging ] W[_.

Sp_PAn_RUNK_RF




6. Report / ODMAP / code

biomod2 - Modeling GuloGulo - ODMAP

Last compiled on 08 décembre, 2025

« EB ODMAP protocol
o Overview
o Data
o Model

BIOMOD_Report

i= Formated data

S T Y

¥y Ensemble models

.

» report : provide all possible prints, summaries, results and

plots from a biomod2 object

» ODMAP : pre-fill ODMAP protocol following Zurell et al.

2020 with biomod2 modelling elements

BB ODMAP protocol

Overview

Authorship
Study title
Author names
Contact
Study link
Model objective
Model objective
Target output
Focal Taxon
Focal Taxon
Location
Location
Scale of Analysis
Spatial extent
Spatial resolution
Temporal extent
Temporal resolution
Boundary
Biodiversity data
Observation type
Response data type
Predictors
Predictor types
Hypotheses
Hypotheses
Assumptions
Model assumptions
Algorithms
Modelling techniques
Model complexity
Model averaging
EMwneanByTSS
Workflow
Model workflow
Software

Overview, Data, Model, Assessment and Prediction

Software
Code availability
Data availability

[V IHPORTANT

Species occ
Environment

1n 1:k 1:11

PA 1 RUN 1

GLM —{ Sp_PA1_RUN1_GLM

tobefilledbyuser
tobefilledbyuser
tobefilledbyuser
tobefilledbyuser

NA
tobefilledbyuser

GuloGulo

tobefilledbyuser

ext(-180, 180, -57.499992177, 83.500007823)
3,3

NA

NA

NA

NA
presence-absence

NA
tobefilledbyuser
tobefilledbyuser

ANN, CTA, FDA, GAM, GBM, GLM, MARS, MAXENT, MAXNET, RF, RFd, SRE, XGBOOST
NA

EMcaByTSS, EMciInfByTSS, EMciSupByTSS, EMcvByTSS, EMmeanByTSS, EMmedianByTSS,

NA

biomod2 v4.3.4.3
NA
NA

Sp_Merged_ProbWeightedMean IF

PAN RUNK |

RF 1 Sp_PAL_RUNI_RF

Sp_Merged_Corr.\.r.nitteeAveraging ] I"F

Sp_PAn_RUNK_RF




6. Report / ODMAP / code » report : provide all possible prints, summaries, results and
plots from a biomod2 object

» ODMAP : pre-fill ODMAP protocol following Zurell et al.
2020 with biomod2 modelling elements

» code : provide command lines used to call main functions
BIOMOD_Report

Y= Formated data

myBiomodData <- BIOMOD FormatingData(resp.name = myRespName
resp.var = myResp
resp.xy = myRespXY
expl.var = myExpl)

i= Formated data

bt RIS e e e,

report ¢ Single models

myBiomodModelOut <- BIOMOD Modeling(bm.format = myBiomodData
2 Single models modeling.id = "AllModels”
¢ ODMAP CV.strategy = "randon”
it . 1 P i . CVonb.rep = 2
CV.perc = 0.8
OPT.strategy = "bigboss”
metric.eval = c("TSS", "AUCroc", "BOYCE")

CDdE var.import = 3)

#,4 Ensemble models
myBiomodEM <- BIOMOD EnsembleModeling(bm.mod = myBiomodModelOut

models.chosen = "all"

em.by = "all”

em.algo = c("EMmedian”, "EMmean”, "EMwmean", "EMca", "EMci", "EMcv")
metric.select = c("TSS")

metric.select.thresh = c(0.7)

metric.eval = c("TSS", "AUCroc", "BOYCE")

var.import = 3

EMci.alpha = 0.05

EMwmean.decay = "proportional”)

¥y Ensemble models

.

1n 1:k 1:11 lin*k*11

PA1 RUN 1 GLM H Sp_PAl_RUN1_GLM Sp_Merged_ProbWeightedMean ] IFﬁ
Environment
PAN RUNK_ | RF | Sp_PAL RUNL RF Sp_Merged_CommitteeAveraging | W[_.
Sp_PAn_RUNk_RF




Species distribution modeling,
calibration and evaluation,
ensemble modeling

Thuiller, W. (2003), BIOMOD - optimizing predictions of species distributions and projecting potential future shifts under global change.
Global Change Biology, 9: 1353-1362. https://doi.org/10.1046/].1365-2486.2003.00666.x

Thuiller, W., Lafourcade, B., Engler, R. and Araujo, M.B. (2009), BIOMOD - a platform for ensemble forecasting of species distributions.
Ecography, 32: 369-373. https://doi.org/10.1111/j.1600-0587.2008.05742.x


https://github.com/biomodhub/biomod2/
https://biomodhub.github.io/biomod2/
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