data.type
, has.filter.raster
and
biomod2.version
slot for BIOMOD.formated.data
and BIOMOD.formated.data.PA
classes.BIOMOD.options.default.correct
function (default
changes and corrections depending on the data type (mainly for
type
, method
, family
and
distribution
options) to
BIOMOD.options.dataset
).BIOMOD.formated.data.check_data
function (routine
that can be applied to both original and evaluation datasets).plot.BIOMOD.formated.data.abundance
function (to
plot formated data when data type is not binary)BIOMOD.formated.data
summary to the different
data typesdata.type
slot for BIOMOD.models.out
classset_new_dirname
and
set_new_dirname.models
functions (to recursively modify the
dir.name
slot in all biomod2 objects of an existing
simulation directory)model_type
and thresholds_ordinal
slot
for biomod2_model
classpredict2
functions for single models to deal
with the different data types (mainly between binary,
ordinal and the others)bm_CrossValidation
function :
.sample_mat
function into
.sample_num
and .sample_class
functionsbm_FindOptimStat
function :
k
parameter.contingency_table_ordinal
functionbm_CalculateStat
function into
bm_CalculateStatBin
and bm_CalculateStatAbun
functionsbm_VariablesImportance
function :
on_0_1000
or on_1_1000
when
making projectionsbm_ModelAnalysis
function (to analyse the
residuals of single models)ModelsTable
data with nonbinary
data typeOptionsBigboss
data with all nonbinary
single models optionsdir.name
slot within
BIOMOD.formated.data
into absolute one instead of relative
by defaultaes_string
to [aes
+
.data
] in bm_Plot[...]
functionsdigits
and overwrite
parameters in
BIOMOD_Projection
functionget_var_type
and get_var_range
to
internal functions (.get_var_type
and
.get_var_range
)
bm_CrossValidation
(partitions not being balanced
correctly)bm_PlotEvalMean
bm_Tuning
(to be able
to run the step AIC with the user formula)scale.models = FALSE
by default in
BIOMOD_Modeling
and bm_RunModelsLoop
get_evaluations
and
get_variables_importance
message when data is not available
(extended to bm_Plot[...]
functions)parallel::stopCluster
and
foreach:::.foreachGlobals
.errorhandling
in foreach
loop in
bm_RunModelsLoop
(for MAXENT on Windows)bm_CrossValidation
bm_PlotEvalMean
MAXENT.partitions
, MAXENT.kfolds
,
MAXENT.user.grp
and MAXENT.tune.args
parameters in bm_Tuning
functiontif
)OptionsBigboss
have been
modified (concerns only ANN, CTA and RF models)RFd
: Random Forest with a down-sampling
method.seed.val
for bm_pseudoAbsences
and
BIOMOD_FormatingData
.fact.aggr
argument for pseudo-absences selection
with the random and disk methods. It allows to reduce the resolution of
the environment.bm_ModelingOptions
.BIOMOD_EnsembleModeling
when multiple PA datasets
(obs
and fit
not matching when calling
bm_FindOptimStat
)new.env
in BIOMOD_Projection
and
BIOMOD_EnsembleForecasting
tests/
folder (unused)new.env
in
BIOMOD_Projection
and
BIOMOD_EnsembleForecasting
MAXENT
tuningBIOMOD.options.dataset
and
BIOMOD.models.options
classesGAM.binary.gam.gam
and
GAM.binary.mgcv.bam
in OptionsBigboss
datasetobs
and fit
parameters in
bm_FindOptimStat
bm_Tuning
function :
MAXENT.algorithm
and MAXENT.parallel
parametersXGBOOST
and SRE
gamSpline
to gamLoess
method
to tune GAM.gam.gam
model, and add GAM.span
and GAM.degree
parametersBIOMOD_Modeling
BIOMOD.options.default
and
BIOMOD.options.dataset
classes, retrieving default
parameters and values with formalArgs
functionModelsTable
and OptionsBigboss
datasets containing single models informations and pre-defined modeling
optionsBIOMOD_ModelingOptions
to
bm_ModelingOptions
bm_ModelingOptions
directly in
BIOMOD_Modeling
and add related OPT.[...]
parametersBIOMOD_Tuning
to bm_Tuning
and adapt
it to match with new modeling optionsbm_RunModelsLoop
in
a more generalized way dealing with new modeling optionsBIOMOD_PresenceOnly
function and add
BOYCE
and MPA
indices into
bm_FindOptimStat
functionFLT4S
datatype only when
EMcv is activated, otherwise use INT2S
wrap
applied to a
data.frame
in BIOMOD_Projection
predict
method for RF
with
do.classif = FALSE
bm_PlotEvalMean
do.classif
ignored in
BIOMOD_ModelingOptions
BIOMOD_Projection
BIOMOD.formated.data
and BIOMOD.formated.data.PA
bm_PlotResponseCurves
for ensemble
models merged by algo (for Maxent)point.size
argument to
plot.BIOMOD.Formated.data
maxcell
argument to
plot.BIOMOD.projected.out
verbose = 0
(from
verbose = 1
)BIOMOD_FormatingData
checks for
resp.xy
.get_data_mask
BIOMOD_Modeling
when using
sampsize
as a vector. argument strata
was
badly formattedBIOMOD_EnsembleModeling
for
additional projection with only one environmental variablesBIOMOD_EnsembleForecasting
when
several projection are running simultaneously and using the same
temporary directorybm_CrossValidation
with
user.defined
tables badly formatted (TRUE/FALSE for data
not in the given PA dataset are now properly transformed into NA)models.pa
argument in BIOMOD_Modeling
).BIOMOD_CrossValidation
have been renamed
bm_CrossValidation
and cross-validation with k-fold,
stratified and environmental strategy now work properly with
pseudo-absence dataset. All cross-validation strategy can now be called
directly through BIOMOD_Modeling
.get_evaluations
,
BIOMOD_EnsembleModeling
, bm_RunModelsLoop
,
bm_RunModel
)save.output
. output are now
automatically saved.terra
and raster
CV.perc
(formerly data.split.perc
) now
uses a 0-1 range (instead of 0-100)BIOMOD_EnsembleModeling
now
gives an error.metric.select.dataset
to
BIOMOD_EnsembleModeling
to choose the dataset which
evaluation metric should be used to filter and/or weigh the ensemble
models. Default value is now ‘validation’ instead of ‘evaluation’.na.rm
to
BIOMOD_EnsembleModeling
to harmonize the management of
NA
among individual model predictions.RF$sampsize
parameter in BIOMOD_ModelingOptions
BIOMOD_Projection
and
BIOMOD_EnsembleForecasting
when
terraOption(todisk = TRUE)
is activated (for large or
numerous raster).data.table
object (that
are converted into standard data.frame
).do.stack = FALSE
and resp.name
with
.
inside.filter.raster = TRUE
in bm_PseudoAbsence
.BIOMOD.formated.data.PA
get_species_data
and
get_eval_data
.BIOMOD_Modeling.prepare.data
bm_RunModelsLoop
to do the PA loop within
the functioncalib.lines
and eval.lines
variable names
are standardised (no more calibLines
or
eval_lines
)data.table
(removed use of
rbindlist
).get_env_class
to reduce code redundancycategorical_stack_to_terra
into
.categorical_stack_to_terra
BIOMOD_FormatingData
checks into
bm_PseudoAbsences
'.tif'
is available as an output format for raster
projection'.tif'
is the new default output format for raster
projectionplot
and summary
methods for
BIOMOD_FormatingData
output. These method now support the
use of calib.lines
to explore how the cross-validation
dataset are structured.plot
methods for
BIOMOD.projection.out
objects so that it uses
ggplot2
for nicer plots.BIOMOD.projection.out
objects. They can be loaded from the
disk with get_predictions
or represented through
BIOMOD.projection.out
plot method.get_predictions
now return a proper
data.frame
(unless projection on spatial data) with many
additional information available. Old behavior can be reproduced by
using get_predictions(x, model.as.col = TRUE)
.get_evaluations
now return a cleaner
data.frame
with more consistent information available.maxent.jar
); ‘MAXENT.Phillips.2’ -> ‘MAXNET’
(based on maxnet
package).BIOMOD_FormatingData
now gives warning when several
input data points are located in the same raster cellsfilter.raster
in
BIOMOD_FormatingData
to filter data points so that none are
located in the same raster cells.BIOMOD_EnsembleModeling
now have an argument
em.algo
to select the ensemble algorithm to be computed.
Separate arguments are now deprecated (prob.mean
,
prob.median
, prob.cv
, prob.ci
,
committee.averaging
, prob.mean.weight
).
Building all possible ensemble models can now be done with
em.algo = c('EMmean','EMmedian','EMcv','EMci','EMca','EMwmean')
.em.by
have slightly changed:
‘PA_dataset’ -> ‘PA’, ‘PA_dataset+repet’ -> ‘PA+run’ and
‘PA_dataset+algo’ -> ‘PA+algo’BIOMOD_Modeling
and
BIOMOD_EnsembleModeling
.MAXENT.Phillips.2
and single variable
models.BIOMOD_CrossValidation
for block-stratified
samplingBIOMOD_CrossValidation
for
pseudo-absencessp
is back into Imports
due to the
need to use sp::read.asciigrid
terra
version number (>= 1.6-33)
as terra
1.6-41 was released on CRAN.do.stack = TRUE
, only stacked projection are now
saved to the disk.initial_heap_size
and max_heap_size
in MAXENT.Phillips
modeling optionsMAXENT.Phillips
.MAXENT.Phillips
predict method for large dataset
(require sp::read.asciigrid
).em.by = 'all'
or 'algo'
.BIOMOD_EnsembleModeling
.BIOMOD_EnsembleForecasting
when a single
evaluation metric was available and binary/filtered transformation were
asked for.BIOMOD.formated.data.PA
object.MAXENT.Phillips
for Windows.do.stack = FALSE
with
BIOMOD_Projection
.EMcv
ensemble modeling for
data.frame
by removing dependency to
raster::cv
.free
method with
PackedSpatRaster
BIOMOD_FormatingData
in case where no coordinates
are givenMAXENT.Phillips
predict2
method
for SpatRaster
so that it saves environmental data as
.asc
and do not use the data.frame
method.BIOMOD.formated.data@data.mask
slot.
data.mask
can now be safely saved and re-opened ;
data.mask
can now store a different extent for evaluation
datasetterra
(> 1.6.33
) and do not automatically import
raster
and sp
.raster
and sp
package into
SUGGESTS
rather than DEPENDS
.raster
and sp
input data type are still
supported.data()
.bm_BinaryTransformation
now always returns
0
/1
and never
TRUE
/FALSE
bm_PlotResponseCurves
for
new.env
possible data types.BIOMOD_Projection
and
BIOMOD_EnsembleForecasting
now properly support matrix as
new.env
get_prediction
on biomod.projection.out
generated from BIOMOD_Projection
based on
SpatRaster
with arg as.data.frame = TRUE
are
now possible.bm_BinaryTransformation
now return same type of object
as its inputBIOMOD_RangeSize
, indicating
how comparison are done depending on the number of models in current vs
future.BIOMOD_CrossValidation
bm_BinaryTransformation
with
data.frame
/matrix
and
do.filtering = TRUE
bm_PlotResponseCurves
now work with factors in
univariate representationbm_PlotResponseCurves
properly handles
SpatRaster
and Raster
as
new.env
MAXENT.Phillips
and a
single environmental variableBIOMOD_EnsembleForecasting
so that it
properly accounts for new.env.xy
when projecting on
matrix
or data.frame
.BIOMOD_EnsembleModeling
now works when called for a
single ensemble modelBIOMOD_RangeSize
.
Comparisons with non-binary values throw errors.BIOMOD_RangeSize
and data.frame methodBIOMOD_RangeSize
data.frame
method now
handles 1 current vs n future projectionBIOMOD_PresenceOnly
that can now work when
evaluation data are providedBIOMOD_PresenceOnly
that can now work when
only the EM have been providedBIOMOD_PresenceOnly
to
SpatRaster
and SpatVector
.build_clamping_mask
now support categorical
variables.categorical2numeric
to transform
categorical variables into numeric within a
data.frame
..get_categorical_names
to
retrieve categorical variable names from a data.frame
.load_stored_object
method into a method for
BIOMOD.stored.SpatRaster
and a method for all other
BIOMOD.stored.data
.BIOMOD.stored.SpatRaster
stores
PackedSpatraster
and not SpatRaster
..CompteurSp
based on old function
CompteurSp that was defined within a function.check_data_range()
.BIOMOD_EnsembleForecasting
.metric.select
.BIOMOD_EnsembleModeling
to generate
warnings when ensemble models are expected to be run with <= 1
models.data.frame
instead of matrix
.dir.name
can now be provided as project argument so
that results may be saved in a custom folder.predict
with CTA
algorithm and categorical
variables on raster is now possible.em.by = "algo"
or em.by = "all"
) so that
evaluation uses the union of PA data sets instead of the whole
environmental space supplied.INT2S
data format when on_0_1000
is set to
TRUE
.get_[...]
, load_stored_object
and BIOMOD_LoadModels
, instead of
get(load(...))
) and the workflow within
get_[...]
functions (use
load_stored_object
and similar arguments such as
as.data.frame
, full.name
,
…).BIOMOD.ensemble.models.out
and
BIOMOD.models.out
objects
BIOMOD.ensemble.models.out
object for
evaluations, variables importance and predictions..Models.save.objects
in
BIOMOD_modeling
to .fill_BIOMOD.models.out
in
biomod2_internal.R
.BIOMOD.ensemble.models.out
and use
load_stored_object
to directly get them within
get_[...]
functions.BIOMOD_FormatingData
, instead of throwing an error linked
to data.mask
.on_0_1000
can now be passed without errors so
that projection may either be on a range from 0 to 1 or from 0 to 1000.
The latter option being more effective memory-wise.BIOMOD_EnsembleModeling
so that em.by
can not
be of length > 1
..get_models_assembling
so that it
did not confound MAXENT.Phillips2
with
MAXENT.Phillips
when grouping models by algorithm in
BIOMOD_EnsembleModeling
.get_predictions
method for
BIOMOD.ensemble.models.out
now accepts an
evaluation
arg. Evaluation values, variables’ importance
and Calibration/Evaluation predictions for ensemble models are now
properly saved by BIOMOD_EnsembleModeling()
.prob.ci.inf
et prob.ci.sup
.BIOMOD_PresenceOnly
now properly manage
NA
.bm_PlotResponseCurves
to only plot
show.variables
.get_predictions.BIOMOD.projection.out
now properly
works when asked for a subset of model.gbm
package to its development version at rpatin/gbm can be
used. (see issue https://github.com/biomodhub/biomod2/issues/102)biomod2_classes
files)BIOMOD_FormatingData
functionBIOMOD_ModelingOptions
functionBIOMOD_FormatingData
: test class condition only a
first element (to deal with matrix
/ array
objects)BIOMOD_EnsembleForecasting
for EMcv
model when only one single model was keptbetamultiplier
parameter to tune MAXENT.Phillips
(Frank B. request)as.data.frame
argument for
get_evaluations()
function to enable formal and ensemble
models evaluation scores mergingMAXENT
calculations (via java) (thanks to Burke
G.)do.stack
argument is set to FALSE
biomod2
objects from a version
to the current oneFALSE
by
defaultbiomod2
models objects (should
be predicted, evaluated, and you can do variables importance) the same
way than all formal biomod2
modelsbiomod2_projection
object: should be plotted…variable_importance
functionmgcv
to
gam
to deal with memory (cache) over-consuming
(thanks to Burke G.)response.plot2
function (optimization + deal
with factorial variables)ProbDensFunc()
function to package to produce nice
plots that show inter-models variabilityrasterVis
dependency for nicer biomod2
plotsPA.dist.min
and PA.dist.max
are now
defined in meters when you work with unprojected rasters in disk pseudo
absences selectionBIOMOD_Modeling
col
,
lty
, data_species
…)modeling.id
arg (BIOMOD_Modeling
)
for prevent from no wanted models overwriting and facilitate models
tests and comparisons (thanks Frank B.)biomod2
datasetpROC
package dependencyRemoveProperly()
BIOMOD_LoadModels
supports multiple models inputNA
in evaluation table issue (*thanks
Frank B.)biomod2
are now defined as “biomod2
models objects” (own scaling models, own predict function, …).grd
or .img
)