R/BIOMOD_LoadModels.R
BIOMOD_LoadModels.Rd
This function loads individual models built with BIOMOD_Modeling
or BIOMOD_EnsembleModeling
functions.
BIOMOD_LoadModels(
bm.out,
full.name = NULL,
PA = NULL,
run = NULL,
algo = NULL,
merged.by.PA = NULL,
merged.by.run = NULL,
merged.by.algo = NULL,
filtered.by = NULL
)
a BIOMOD.models.out
or BIOMOD.ensemble.models.out
object that can be obtained with the BIOMOD_Modeling
or
BIOMOD_EnsembleModeling
functions
(optional, default NULL
)
A vector
containing model names to be kept, must be either all
or a
sub-selection of model names that can be obtained with the get_built_models
function
(optional, default NULL
)
A vector
containing pseudo-absence set to be loaded, must be among PA1
,
PA2
, ...
, allData
(optional, default NULL
)
A vector
containing repetition set to be loaded, must be among RUN1
,
RUN2
, ...
, allRun
(optional, default NULL
)
A character
containing algorithm to be loaded, must be either
ANN
, CTA
, FDA
, GAM
, GBM
, GLM
, MARS
,
MAXENT
, MAXNET
, RF
, SRE
, XGBOOST
(optional, default NULL
)
A vector
containing merged pseudo-absence set to be loaded, must be among PA1
,
PA2
, ...
, mergedData
(optional, default NULL
)
A vector
containing merged repetition set to be loaded, must be among RUN1
,
RUN2
, ...
, mergedRun
(optional, default NULL
)
A character
containing merged algorithm to be loaded, must be among
ANN
, CTA
, FDA
, GAM
, GBM
, GLM
, MARS
,
MAXENT
, MAXNET
, RF
, SRE
, XGBOOST
, mergedAlgo
(optional, default NULL
)
A vector
containing evaluation metric selected to filter single models to build the
ensemble models, must be among POD
, FAR
, POFD
, SR
,
ACCURACY
, BIAS
, ROC
, TSS
, KAPPA
, OR
,
ORSS
, CSI
, ETS
, BOYCE
, MPA
A vector
containing the names of the loaded models.
This function might be of particular use to load models and make response plot analyses.
Running the function providing only bm.out
argument will load all models built by the
BIOMOD_Modeling
or BIOMOD_EnsembleModeling
function, but a
subselection of models can be done using the additional arguments (full.name
, PA
,
run
, algo
, merged.by.PA
, merged.by.run
, merged.by.algo
,
filtered.by
).
BIOMOD_Modeling
, BIOMOD_EnsembleModeling
Other Main functions:
BIOMOD_EnsembleForecasting()
,
BIOMOD_EnsembleModeling()
,
BIOMOD_FormatingData()
,
BIOMOD_Modeling()
,
BIOMOD_Projection()
,
BIOMOD_RangeSize()
library(terra)
# Load species occurrences (6 species available)
data(DataSpecies)
head(DataSpecies)
# Select the name of the studied species
myRespName <- 'GuloGulo'
# Get corresponding presence/absence data
myResp <- as.numeric(DataSpecies[, myRespName])
# Get corresponding XY coordinates
myRespXY <- DataSpecies[, c('X_WGS84', 'Y_WGS84')]
# Load environmental variables extracted from BIOCLIM (bio_3, bio_4, bio_7, bio_11 & bio_12)
data(bioclim_current)
myExpl <- terra::rast(bioclim_current)
DONTSHOW({
myExtent <- terra::ext(0,30,45,70)
myExpl <- terra::crop(myExpl, myExtent)
})
# ---------------------------------------------------------------
file.out <- paste0(myRespName, "/", myRespName, ".AllModels.models.out")
if (file.exists(file.out)) {
myBiomodModelOut <- get(load(file.out))
} else {
# Format Data with true absences
myBiomodData <- BIOMOD_FormatingData(resp.var = myResp,
expl.var = myExpl,
resp.xy = myRespXY,
resp.name = myRespName)
# Model single models
myBiomodModelOut <- BIOMOD_Modeling(bm.format = myBiomodData,
modeling.id = 'AllModels',
models = c('RF', 'GLM'),
CV.strategy = 'random',
CV.nb.rep = 2,
CV.perc = 0.8,
OPT.strategy = 'bigboss',
metric.eval = c('TSS','ROC'),
var.import = 3,
seed.val = 42)
}
# ---------------------------------------------------------------
# Loading some models built
BIOMOD_LoadModels(bm.out = myBiomodModelOut, algo = 'RF')