BIOMOD_EnsembleModeling() output object classR/biomod2_classes_3.R
    BIOMOD.ensemble.models.out.RdClass returned by BIOMOD_EnsembleModeling, and used by
BIOMOD_LoadModels, BIOMOD_PresenceOnly and
BIOMOD_EnsembleForecasting
# S4 method for class 'BIOMOD.ensemble.models.out'
show(object)modeling.ida character corresponding to the name (ID) of the
simulation set
dir.namea character corresponding to the modeling folder
sp.namea character corresponding to the species name
expl.var.namesa vector containing names of explanatory
variables
data.typea character corresponding to the data type
models.outa BIOMOD.stored.models.out-class object
containing informations from BIOMOD_Modeling object
em.bya character corresponding to the way kept models have
been combined to build the ensemble models, must be among
PA+run, PA+algo, PA,
algo, all
em.computeda vector containing names of ensemble models
em.faileda vector containing names of failed ensemble models
em.models_kepta list containing single models for each ensemble model
models.evaluationa BIOMOD.stored.data.frame-class object
containing models evaluation
variables.importancea BIOMOD.stored.data.frame-class object
containing variables importance
models.predictiona BIOMOD.stored.data.frame-class object
containing models predictions
models.prediction.evala BIOMOD.stored.data.frame-class
object containing models predictions for evaluation data
linka character containing the file name of the saved object
calla language object corresponding to the call used to obtain the object
BIOMOD_EnsembleModeling, BIOMOD_LoadModels,
BIOMOD_PresenceOnly, bm_VariablesImportance,
bm_PlotEvalMean, bm_PlotEvalBoxplot,
bm_PlotVarImpBoxplot, bm_PlotResponseCurves
Other Toolbox objects:
BIOMOD.formated.data,
BIOMOD.formated.data.PA,
BIOMOD.models.options,
BIOMOD.models.out,
BIOMOD.options.dataset,
BIOMOD.options.default,
BIOMOD.projection.out,
BIOMOD.rangesize.out,
BIOMOD.stored.data,
biomod2_ensemble_model,
biomod2_model
showClass("BIOMOD.ensemble.models.out")
## ----------------------------------------------------------------------- #
library(terra)
# Load species occurrences (6 species available)
data(DataSpecies)
head(DataSpecies)
# Select the name of the studied species
myRespName <- 'GuloGulo'
# Get corresponding presence/absence data
myResp <- as.numeric(DataSpecies[, myRespName])
# Get corresponding XY coordinates
myRespXY <- DataSpecies[, c('X_WGS84', 'Y_WGS84')]
# Load environmental variables extracted from BIOCLIM (bio_3, bio_4, bio_7, bio_11 & bio_12)
data(bioclim_current)
myExpl <- terra::rast(bioclim_current)
DONTSHOW({
myExtent <- terra::ext(0,30,45,70)
myExpl <- terra::crop(myExpl, myExtent)
})
## ----------------------------------------------------------------------- #
file.out <- paste0(myRespName, "/", myRespName, ".AllModels.models.out")
if (file.exists(file.out)) {
  myBiomodModelOut <- get(load(file.out))
} else {
  # Format Data with true absences
  myBiomodData <- BIOMOD_FormatingData(resp.name = myRespName,
                                       resp.var = myResp,
                                       resp.xy = myRespXY,
                                       expl.var = myExpl)
  # Model single models
  myBiomodModelOut <- BIOMOD_Modeling(bm.format = myBiomodData,
                                      modeling.id = 'AllModels',
                                      models = c('RF', 'GLM'),
                                      CV.strategy = 'random',
                                      CV.nb.rep = 2,
                                      CV.perc = 0.8,
                                      OPT.strategy = 'bigboss',
                                      metric.eval = c('TSS', 'AUCroc'),
                                      var.import = 3,
                                      seed.val = 42)
}
## ----------------------------------------------------------------------- #
# Model ensemble models
myBiomodEM <- BIOMOD_EnsembleModeling(bm.mod = myBiomodModelOut,
                                      models.chosen = 'all',
                                      em.by = 'all',
                                      em.algo = c('EMmean', 'EMca'),
                                      metric.select = c('TSS'),
                                      metric.select.thresh = c(0.7),
                                      metric.eval = c('TSS', 'AUCroc'),
                                      var.import = 3,
                                      seed.val = 42)
myBiomodEM