Plot the spatial distribution of presences, absences and
pseudo-absences among the different potential dataset (calibration,
validation and evaluation). Available only if coordinates were given to
BIOMOD_FormatingData
.
# S4 method for class 'BIOMOD.formated.data,missing'
plot(
x,
calib.lines = NULL,
plot.type,
plot.output,
PA,
run,
plot.eval,
point.size = 1.5,
do.plot = TRUE
)
a BIOMOD.formated.data
or BIOMOD.formated.data.PA
object. Coordinates must be available to be able to use plot
.
(optional, default NULL
)
an data.frame
object returned by get_calib_lines
or
bm_CrossValidation
functions, to explore the distribution of calibration
and validation datasets
a character
, either 'points'
(default)
or 'raster'
(if environmental variables were given as a raster).
With plot.type = 'points'
occurrences will be represented as points
(better when using fine-grained data). With plot.type = 'raster'
occurrences will be represented as a raster (better when using coarse-grained
data)
a character
, either 'facet'
(default)
or 'list'
. plot.output
determines whether plots are returned
as a single facet with all plots or a list
of individual plots
(better when there are numerous graphics)
(optional, default 'all'
)
If x
is a BIOMOD.formated.data.PA
object, a vector
containing pseudo-absence set to be represented
(optional, default 'all'
)
If calib.lines
provided, a vector
containing repetition set to
be represented
(optional, default TRUE
)
A logical
defining whether evaluation data should be added to the plot or not
a numeric
to adjust the size of points when
plot.type = 'points'
.
(optional, default TRUE
)
A logical
defining whether the plot is to be rendered or not
a list
with the data used to generate the plot and a
ggplot2
object
library(terra)
# Load species occurrences (6 species available)
data(DataSpecies)
head(DataSpecies)
# Select the name of the studied species
myRespName <- 'GuloGulo'
# Get corresponding presence/absence data
myResp <- as.numeric(DataSpecies[, myRespName])
# Get corresponding XY coordinates
myRespXY <- DataSpecies[, c('X_WGS84', 'Y_WGS84')]
# Load environmental variables extracted from BIOCLIM (bio_3, bio_4, bio_7, bio_11 & bio_12)
data(bioclim_current)
myExpl <- terra::rast(bioclim_current)
DONTSHOW({
myExtent <- terra::ext(0,30,45,70)
myExpl <- terra::crop(myExpl, myExtent)
})
## ----------------------------------------------------------------------- #
# Format Data with true absences
myBiomodData <- BIOMOD_FormatingData(resp.var = myResp,
expl.var = myExpl,
resp.xy = myRespXY,
resp.name = myRespName)
myBiomodData
plot(myBiomodData)