BIOMOD_FormatingData() output object class (with pseudo-absences)R/biomod2_classes_1.R
BIOMOD.formated.data.PA.RdClass returned by BIOMOD_FormatingData, and used by
bm_Tuning, bm_CrossValidation and
BIOMOD_Modeling
# S4 method for class 'numeric,data.frame'
BIOMOD.formated.data.PA(
sp,
env,
xy = NULL,
dir.name = ".",
sp.name = NULL,
eval.sp = NULL,
eval.env = NULL,
eval.xy = NULL,
PA.nb.rep = 1,
PA.strategy = "random",
PA.nb.absences = NULL,
PA.dist.min = 0,
PA.dist.max = NULL,
PA.sre.quant = 0.025,
PA.fact.aggr = NULL,
PA.user.table = NULL,
na.rm = TRUE,
filter.raster = FALSE,
seed.val = NULL
)
# S4 method for class 'numeric,SpatRaster'
BIOMOD.formated.data.PA(
sp,
env,
xy = NULL,
dir.name = ".",
sp.name = NULL,
eval.sp = NULL,
eval.env = NULL,
eval.xy = NULL,
PA.nb.rep = 1,
PA.strategy = "random",
PA.nb.absences = NULL,
PA.dist.min = 0,
PA.dist.max = NULL,
PA.sre.quant = 0.025,
PA.fact.aggr = NULL,
PA.user.table = NULL,
na.rm = TRUE,
filter.raster = FALSE,
seed.val = NULL
)a vector, a SpatVector without associated
data (if presence-only), or a SpatVector
object containing binary data (0 : absence, 1 : presence,
NA : indeterminate) for a single species that will be used to
build the species distribution model(s)
Note that old format from sp are still supported such as
SpatialPoints (if presence-only) or SpatialPointsDataFrame
object containing binary data.
a matrix, data.frame, SpatVector
or SpatRaster object containing the explanatory variables
(in columns or layers) that will be used to build the species distribution model(s).
Note that old format from raster and sp are still supported such as
RasterStack and SpatialPointsDataFrame objects.
(optional, default NULL)
If resp.var is a vector, a 2-columns matrix or data.frame
containing the corresponding X and Y coordinates that will be used to build the
species distribution model(s)
a character corresponding to the modeling folder
a character corresponding to the species name
(optional, default NULL)
A vector, a SpatVector without associated
data (if presence-only), or a SpatVector
object containing binary data (0 : absence, 1 : presence,
NA : indeterminate) for a single species that will be used to
evaluate the species distribution model(s) with independent data
Note that old format from sp are still supported such as
SpatialPoints (if presence-only) or SpatialPointsDataFrame
object containing binary data.
(optional, default NULL)
A matrix, data.frame, SpatVector or
SpatRaster object containing the explanatory
variables (in columns or layers) that will be used to evaluate the species
distribution model(s) with independent data
Note that old format from raster and sp are still
supported such as RasterStack and SpatialPointsDataFrame
objects.
(optional, default NULL)
If resp.var is a vector, a 2-columns matrix or
data.frame containing the corresponding X and Y
coordinates that will be used to evaluate the species distribution model(s)
with independent data
(optional, default 0)
If pseudo-absence selection, an integer corresponding to the number of sets
(repetitions) of pseudo-absence points that will be drawn
(optional, default NULL)
If pseudo-absence selection, a character defining the strategy that will be used to
select the pseudo-absence points. Must be random, sre, disk or
user.defined (see Details)
(optional, default 0)
If pseudo-absence selection, and PA.strategy = 'random' or PA.strategy = 'sre'
or PA.strategy = 'disk', an integer (or a vector of integer the
same size as PA.nb.rep) corresponding to the number of pseudo-absence points that
will be selected for each pseudo-absence repetition (true absences included)
(optional, default 0)
If pseudo-absence selection and PA.strategy = 'disk', a numeric defining the
minimal distance to presence points used to make the disk pseudo-absence selection
(in the same projection system units as coord, see Details)
(optional, default 0)
If pseudo-absence selection and PA.strategy = 'disk', a numeric defining the
maximal distance to presence points used to make the disk pseudo-absence selection
(in the same projection system units as coord, see Details)
(optional, default 0)
If pseudo-absence selection and PA.strategy = 'sre', a numeric between 0
and 0.5 defining the half-quantile used to make the sre pseudo-absence selection
(see Details)
(optional, default NULL)
If strategy = 'random' or strategy = 'disk', a integer defining the factor of aggregation to reduce the resolution
(optional, default NULL)
If pseudo-absence selection and PA.strategy = 'user.defined', a matrix or
data.frame with as many rows as resp.var values, as many columns as
PA.nb.rep, and containing TRUE or FALSE values defining which points
will be used to build the species distribution model(s) for each repetition (see Details)
(optional, default TRUE)
A logical value defining whether points having one or several missing
values for explanatory variables should be removed from the analysis or not
(optional, default FALSE)
If env is of raster type, a logical value defining whether sp
is to be filtered when several points occur in the same raster cell
(optional, default NULL)
An integer value corresponding to the new seed value to be set
dir.namea character corresponding to the modeling folder
sp.namea character corresponding to the species name
coorda 2-columns data.frame containing the corresponding X and Y
coordinates
data.speciesa vector containing the species observations (0, 1 or
NA)
data.env.vara data.frame containing explanatory variables
data.maska SpatRaster object containing
the mask of the studied area
has.data.evala logical value defining whether evaluation data is given
eval.coord(optional, default NULL)
A 2-columns data.frame containing the corresponding X and Y
coordinates for evaluation data
eval.data.species(optional, default NULL)
A vector containing the species observations (0, 1 or NA) for
evaluation data
eval.data.env.var(optional, default NULL)
A data.frame containing explanatory variables for evaluation data
PA.strategya character corresponding to the pseudo-absence selection strategy
PA.tablea data.frame containing the corresponding table of selected
pseudo-absences (indicated by TRUE or FALSE) from the pa.tab list
element returned by the bm_PseudoAbsences function
BIOMOD_FormatingData, bm_PseudoAbsences,
bm_Tuning, bm_CrossValidation,
BIOMOD_Modeling, bm_RunModelsLoop
Other Toolbox objects:
BIOMOD.ensemble.models.out,
BIOMOD.formated.data,
BIOMOD.models.options,
BIOMOD.models.out,
BIOMOD.options.dataset,
BIOMOD.options.default,
BIOMOD.projection.out,
BIOMOD.rangesize.out,
BIOMOD.stored.data,
biomod2_ensemble_model,
biomod2_model
showClass("BIOMOD.formated.data.PA")
## ----------------------------------------------------------------------- #
library(terra)
# Load species occurrences (6 species available)
data(DataSpecies)
head(DataSpecies)
# Select the name of the studied species
myRespName <- 'GuloGulo'
# Keep only presence informations
DataSpecies <- DataSpecies[which(DataSpecies[, myRespName] == 1), ]
# Get corresponding presence/absence data
myResp <- as.numeric(DataSpecies[, myRespName])
# Get corresponding XY coordinates
myRespXY <- DataSpecies[, c('X_WGS84', 'Y_WGS84')]
# Load environmental variables extracted from BIOCLIM (bio_3, bio_4, bio_7, bio_11 & bio_12)
data(bioclim_current)
myExpl <- terra::rast(bioclim_current)
DONTSHOW({
myExtent <- terra::ext(0,30,45,70)
myExpl <- terra::crop(myExpl, myExtent)
})
## ----------------------------------------------------------------------- #
# Format Data with pseudo-absences : random method
myBiomodData <- BIOMOD_FormatingData(resp.name = myRespName,
resp.var = myResp,
resp.xy = myRespXY,
expl.var = myExpl,
PA.nb.rep = 4,
PA.strategy = 'random',
PA.nb.absences = 1000)
myBiomodData
plot(myBiomodData)