Class returned by BIOMOD_FormatingData, and used by
bm_Tuning, bm_CrossValidation and
BIOMOD_Modeling
# S4 method for class 'numeric,data.frame'
BIOMOD.formated.data(
sp,
env,
xy = NULL,
dir.name = ".",
data.type = NULL,
sp.name = NULL,
eval.sp = NULL,
eval.env = NULL,
eval.xy = NULL,
na.rm = TRUE,
data.mask = NULL,
shared.eval.env = FALSE,
filter.raster = FALSE
)
# S4 method for class 'data.frame,ANY'
BIOMOD.formated.data(
sp,
env,
xy = NULL,
dir.name = ".",
data.type = NULL,
sp.name = NULL,
eval.sp = NULL,
eval.env = NULL,
eval.xy = NULL,
na.rm = TRUE,
filter.raster = FALSE
)
# S4 method for class 'numeric,matrix'
BIOMOD.formated.data(
sp,
env,
xy = NULL,
dir.name = ".",
data.type = NULL,
sp.name = NULL,
eval.sp = NULL,
eval.env = NULL,
eval.xy = NULL,
na.rm = TRUE,
filter.raster = FALSE
)
# S4 method for class 'numeric,SpatRaster'
BIOMOD.formated.data(
sp,
env,
xy = NULL,
dir.name = ".",
data.type = NULL,
sp.name = NULL,
eval.sp = NULL,
eval.env = NULL,
eval.xy = NULL,
na.rm = TRUE,
shared.eval.env = FALSE,
filter.raster = FALSE
)
# S4 method for class 'BIOMOD.formated.data'
show(object)a vector, a SpatVector without associated
data (if presence-only), or a SpatVector
object containing binary data (0 : absence, 1 : presence,
NA : indeterminate) for a single species that will be used to
build the species distribution model(s)
Note that old format from sp are still supported such as
SpatialPoints (if presence-only) or SpatialPointsDataFrame
object containing binary data.
a matrix, data.frame, SpatVector
or SpatRaster object containing the explanatory variables
(in columns or layers) that will be used to build the species distribution model(s).
Note that old format from raster and sp are still supported such as
RasterStack and SpatialPointsDataFrame objects.
(optional, default NULL)
If resp.var is a vector, a 2-columns matrix or data.frame
containing the corresponding X and Y coordinates that will be used to build the
species distribution model(s)
a character corresponding to the modeling folder
a character corresponding to the data type
a character corresponding to the species name
(optional, default NULL)
A vector, a SpatVector without associated
data (if presence-only), or a SpatVector
object containing binary data (0 : absence, 1 : presence,
NA : indeterminate) for a single species that will be used to
evaluate the species distribution model(s) with independent data
Note that old format from sp are still supported such as
SpatialPoints (if presence-only) or SpatialPointsDataFrame
object containing binary data.
(optional, default NULL)
A matrix, data.frame, SpatVector or
SpatRaster object containing the explanatory
variables (in columns or layers) that will be used to evaluate the species
distribution model(s) with independent data
Note that old format from raster and sp are still
supported such as RasterStack and SpatialPointsDataFrame
objects.
(optional, default NULL)
If resp.var is a vector, a 2-columns matrix or
data.frame containing the corresponding X and Y
coordinates that will be used to evaluate the species distribution model(s)
with independent data
(optional, default TRUE)
A logical value defining whether points having one or several missing
values for explanatory variables should be removed from the analysis or not
(optional, default NULL)
A SpatRaster object containing the mask of the studied area
(optional, default FALSE)
A logical value defining whether the explanatory variables used for the
evaluation dataset are the same than the ones for calibration (if eval.env not
provided for example) or not
(optional, default FALSE)
If env is of raster type, a logical value defining whether sp
is to be filtered when several points occur in the same raster cell
a BIOMOD.formated.data object
data.typea character corresponding to the data type
dir.namea character corresponding to the modeling folder
sp.namea character corresponding to the species name
coorda 2-columns data.frame containing the corresponding X and Y
coordinates
data.speciesa vector containing the species observations (0, 1 or
NA)
data.env.vara data.frame containing explanatory variables
data.maska SpatRaster object containing the mask of the
studied area
has.data.evala logical value defining whether evaluation data is given
has.filter.rastera logical value defining whether filtering have been done or not
eval.coord(optional, default NULL)
A 2-columns data.frame containing the corresponding X and Y
coordinates for evaluation data
eval.data.species(optional, default NULL)
A vector containing the species observations (0, 1 or NA) for
evaluation data
eval.data.env.var(optional, default NULL)
A data.frame containing explanatory variables for evaluation data
biomod2.versiona character corresponding to the biomod2 version
calla language object corresponding to the call used to obtain the object
BIOMOD_FormatingData, bm_Tuning,
bm_CrossValidation, BIOMOD_Modeling,
bm_RunModelsLoop
Other Toolbox objects:
BIOMOD.ensemble.models.out,
BIOMOD.formated.data.PA,
BIOMOD.models.options,
BIOMOD.models.out,
BIOMOD.options.dataset,
BIOMOD.options.default,
BIOMOD.projection.out,
BIOMOD.rangesize.out,
BIOMOD.stored.data,
biomod2_ensemble_model,
biomod2_model
showClass("BIOMOD.formated.data")
## ----------------------------------------------------------------------- #
library(terra)
# Load species occurrences (6 species available)
data(DataSpecies)
head(DataSpecies)
# Select the name of the studied species
myRespName <- 'GuloGulo'
# Get corresponding presence/absence data
myResp <- as.numeric(DataSpecies[, myRespName])
# Get corresponding XY coordinates
myRespXY <- DataSpecies[, c('X_WGS84', 'Y_WGS84')]
# Load environmental variables extracted from BIOCLIM (bio_3, bio_4, bio_7, bio_11 & bio_12)
data(bioclim_current)
myExpl <- terra::rast(bioclim_current)
DONTSHOW({
myExtent <- terra::ext(0,30,45,70)
myExpl <- terra::crop(myExpl, myExtent)
})
## ----------------------------------------------------------------------- #
# Format Data with true absences
myBiomodData <- BIOMOD_FormatingData(resp.name = myRespName,
resp.var = myResp,
resp.xy = myRespXY,
expl.var = myExpl)
myBiomodData
plot(myBiomodData)
summary(myBiomodData)