R/bm_BinaryTransformation.R
bm_BinaryTransformation.Rd
This internal biomod2 function allows to convert probability (not necessary
between 0
and 1
) values into binary presence-absence (0
or 1
) values
according to a predefined threshold (see Details).
bm_BinaryTransformation(data, threshold, do.filtering = FALSE)
# S4 method for data.frame
bm_BinaryTransformation(data, threshold, do.filtering = FALSE)
# S4 method for matrix
bm_BinaryTransformation(data, threshold, do.filtering = FALSE)
# S4 method for numeric
bm_BinaryTransformation(data, threshold, do.filtering = FALSE)
# S4 method for SpatRaster
bm_BinaryTransformation(data, threshold, do.filtering = FALSE)
a vector
, a matrix
, data.frame
, or a
SpatRaster
containing the data to be converted
a numeric
or a vector
of numeric
corresponding to
the threshold used to convert the given data
(optional, default FALSE
)
A logical
value defining whether filtered data should be returned, or binary one
(see Details)
An object of the same class than data
and containing either
binary (0
or 1
) values, or filtered values.
If data
is a vector
, threshold
should be a single
numeric
value.
If data
is a matrix
, data.frame
or
SpatRaster
, threshold
should be a
vector
containing as many values as the number of columns or
layers contained in data
. If only one numeric
value is given,
the same threshold will be applied to all columns or layers.
If do.filtering = FALSE
, binary (0
or 1
) values are returned.
If do.filtering = TRUE
, values will be filtered according to threshold
,
meaning that :
data < threshold
will return 0
data >= threshold
will return the actual values of data
(not
transformed in 1
)
BIOMOD_Projection
, BIOMOD_EnsembleForecasting
Other Secundary functions:
bm_CrossValidation()
,
bm_FindOptimStat()
,
bm_MakeFormula()
,
bm_ModelingOptions()
,
bm_PlotEvalBoxplot()
,
bm_PlotEvalMean()
,
bm_PlotRangeSize()
,
bm_PlotResponseCurves()
,
bm_PlotVarImpBoxplot()
,
bm_PseudoAbsences()
,
bm_RunModelsLoop()
,
bm_SRE()
,
bm_SampleBinaryVector()
,
bm_SampleFactorLevels()
,
bm_Tuning()
,
bm_VariablesImportance()
## Generate a 0-1000 vector (normal distribution)
vec.d <- rnorm(100, 500, 100)
## From continuous to binary / filtered vector
vec.d_bin <- bm_BinaryTransformation(data = vec.d, threshold = 500)
vec.d_filt <- bm_BinaryTransformation(data = vec.d, threshold = 500, do.filtering = TRUE)
cbind(vec.d, vec.d_bin, vec.d_filt)