This internal biomod2 function allows to tune single model parameters and select more efficient ones based on an evaluation metric.
bm_Tuning(
model,
tuning.fun,
do.formula = FALSE,
do.stepAIC = FALSE,
bm.options,
bm.format,
calib.lines = NULL,
metric.eval = "TSS",
metric.AIC = "AIC",
weights = NULL,
ctrl.train = NULL,
params.train = list(ANN.size = c(2, 4, 6, 8), ANN.decay = c(0.01, 0.05, 0.1), ANN.bag =
FALSE, FDA.degree = 1:2, FDA.nprune = 2:25, GAM.select = c(TRUE, FALSE), GAM.method =
c("GCV.Cp", "GACV.Cp", "REML", "P-REML", "ML", "P-ML"), GAM.span = c(0.3, 0.5, 0.7),
GAM.degree = 1, GBM.n.trees = c(500, 1000, 2500), GBM.interaction.depth = seq(2, 8,
by = 3), GBM.shrinkage = c(0.001, 0.01, 0.1), GBM.n.minobsinnode = 10, MARS.degree =
1:2, MARS.nprune = 2:max(21, 2 * ncol(bm.format@data.env.var) + 1), MAXENT.algorithm
= "maxnet",
MAXENT.parallel = TRUE, RF.mtry = 1:min(10,
ncol(bm.format@data.env.var)), RFd.mtry = 1:min(10, ncol(bm.format@data.env.var)),
SRE.quant = c(0, 0.0125, 0.025, 0.05, 0.1), XGBOOST.nrounds = 50, XGBOOST.max_depth =
1, XGBOOST.eta = c(0.3, 0.4), XGBOOST.gamma = 0, XGBOOST.colsample_bytree = c(0.6,
0.8), XGBOOST.min_child_weight = 1, XGBOOST.subsample = 0.5)
)
a character
corresponding to the algorithm to be tuned, must be either
ANN
, CTA
, FDA
, GAM
, GBM
, GLM
, MARS
,
MAXENT
, MAXNET
, RF
, RFd
, SRE
, XGBOOST
a character
corresponding to the model function name to be called
through train
function for tuning parameters (see ModelsTable
dataset)
(optional, default FALSE
)
A logical
value defining whether formula is to be optimized or not
(optional, default FALSE
)
A logical
value defining whether variables selection is to be performed for
GLM
and GAM
models or not
a BIOMOD.options.default
or BIOMOD.options.dataset
object returned by the bm_ModelingOptions
function
a BIOMOD.formated.data
or BIOMOD.formated.data.PA
object returned by the BIOMOD_FormatingData
function
(optional, default NULL
)
A data.frame
object returned by get_calib_lines
or
bm_CrossValidation
functions
a character
corresponding to the evaluation metric to be used, must
be either AUC
, Kappa
or TSS
for SRE
only ; auc.val.avg
,
auc.diff.avg
, or.mtp.avg
, or.10p.avg
, AICc
for MAXENT
only ;
ROC
or TSS
for all other models
a character
corresponding to the AIC metric to be used, must
be either AIC
or BIC
(optional, default NULL
)
A vector
of numeric
values corresponding to observation weights (one per
observation, see Details)
(optional, default NULL
)
A trainControl
object
a list
containing values of model parameters to be tested
(see Details)
A BIOMOD.models.options
object (see bm_ModelingOptions
) with
optimized parameters
Concerning ctrl.train
parameter :
Set by default to :
ctrl.train <- caret::trainControl(method = "repeatedcv", repeats = 3, number = 10,
summaryFunction = caret::twoClassSummary,
classProbs = TRUE, returnData = FALSE)
Concerning params.train
parameter :
All elements of the list
must have names matching model.parameter_name
format,
parameter_name
being one of the parameter of the tuning.fun
function called by
caret
package and that can be found through the getModelInfo
function.
Currently, the available parameters to be tuned are the following :
size
, decay
, bag
maxdepth
degree
, nprune
span
, degree
select
, method
n.trees
, interaction.depth
, shrinkage
, n.minobsinnode
degree
, nprune
algorithm
, parallel
mtry
mtry
quant
nrounds
, max_depth
, eta
, gamma
,
colsampl_bytree
, min_child_weight
, subsample
The expand.grid
function is used to build a matrix
containing all
combinations of parameters to be tested.
No tuning for GLM
and MAXNET
MAXENT
is tuned through ENMevaluate
function which is
calling either :
maxnet (by defining MAXENT.algorithm = 'maxnet'
) (default)
Java version of Maxent defined in dismo package (by defining
MAXENT.algorithm = 'maxent.jar'
)
SRE
is tuned through bm_SRE
function
All other models are tuned through train
function
No optimization of formula for MAXENT
, MAXNET
, SRE
and
XGBOOST
No interaction included in formula for CTA
Variables selection only for GAM.gam
and GLM
trainControl
, train
,
ENMevaluate
,
ModelsTable
, BIOMOD.models.options
,
bm_ModelingOptions
, BIOMOD_Modeling
Other Secundary functions:
bm_BinaryTransformation()
,
bm_CrossValidation()
,
bm_FindOptimStat()
,
bm_MakeFormula()
,
bm_ModelingOptions()
,
bm_PlotEvalBoxplot()
,
bm_PlotEvalMean()
,
bm_PlotRangeSize()
,
bm_PlotResponseCurves()
,
bm_PlotVarImpBoxplot()
,
bm_PseudoAbsences()
,
bm_RunModelsLoop()
,
bm_SRE()
,
bm_SampleBinaryVector()
,
bm_SampleFactorLevels()
,
bm_VariablesImportance()
library(terra)
# Load species occurrences (6 species available)
data(DataSpecies)
head(DataSpecies)
# Select the name of the studied species
myRespName <- 'GuloGulo'
# Get corresponding presence/absence data
myResp <- as.numeric(DataSpecies[, myRespName])
# Get corresponding XY coordinates
myRespXY <- DataSpecies[, c('X_WGS84', 'Y_WGS84')]
# Load environmental variables extracted from BIOCLIM (bio_3, bio_4, bio_7, bio_11 & bio_12)
data(bioclim_current)
myExpl <- terra::rast(bioclim_current)
# \dontshow{
myExtent <- terra::ext(0,30,45,70)
myExpl <- terra::crop(myExpl, myExtent)
# }
# --------------------------------------------------------------- #
# Format Data with true absences
myBiomodData <- BIOMOD_FormatingData(resp.var = myResp,
expl.var = myExpl,
resp.xy = myRespXY,
resp.name = myRespName)
# --------------------------------------------------------------- #
# List of all models currently available in `biomod2` (and their related package and function)
# Some of them can be tuned through the `train` function of the `caret` package
# (and corresponding training function to be used is indicated)
data(ModelsTable)
ModelsTable
allModels <- c('ANN', 'CTA', 'FDA', 'GAM', 'GBM', 'GLM'
, 'MARS', 'MAXENT', 'MAXNET', 'RF', 'SRE', 'XGBOOST')
# default parameters
opt.d <- bm_ModelingOptions(data.type = 'binary',
models = allModels,
strategy = 'default')
# tune parameters for Random Forest model
tuned.rf <- bm_Tuning(model = 'RF',
tuning.fun = 'rf', ## see in ModelsTable
do.formula = FALSE,
bm.options = opt.d@options$RF.binary.randomForest.randomForest,
bm.format = myBiomodData)
tuned.rf
if (FALSE) {
# tune parameters for GAM (from mgcv package) model
tuned.gam <- bm_Tuning(model = 'GAM',
tuning.fun = 'gam', ## see in ModelsTable
do.formula = TRUE,
do.stepAIC = TRUE,
bm.options = opt.d@options$GAM.binary.mgcv.gam,
bm.format = myBiomodData)
tuned.gam
}