This function represents species range change from object that can be obtained
from BIOMOD_RangeSize
function. Several graphics can be obtained, representing
global counts or proportions of gains / losses, as well as spatial representations (see Details).
bm_PlotRangeSize(
bm.range,
do.count = TRUE,
do.perc = TRUE,
do.maps = TRUE,
do.mean = TRUE,
do.plot = TRUE,
row.names = c("Species", "Dataset", "Run", "Algo")
)
an object returned by the BIOMOD_RangeSize
function
(optional, default TRUE
)
A logical
value defining whether the count plot is to be computed or not
(optional, default TRUE
)
A logical
value defining whether the percentage plot is to be computed or not
(optional, default TRUE
)
A logical
value defining whether the maps plot is to be computed or not
(optional, default TRUE
)
A logical
value defining whether the mean maps plot is to be computed or not
(optional, default TRUE
)
A logical
value defining whether the plots are to be rendered or not
(optional, default c('Species', 'Dataset', 'Run', 'Algo')
)
A vector
containing tags matching bm.range$Compt.By.Models
rownames splitted by
'_' character
A list
containing one or several data.frame
and the corresponding
ggplot
object representing species range change.
4 plots can be obtained with this function :
representing absolute number of locations (pixels) lost, stable and gained
representing percentage of locations (pixels) lost, stable, and
the corresponding Species Range Change (PercGain - PercLoss
)
representing spatially locations (pixels) lost, stable and gained for each single distribution model
representing spatially locations (pixels) lost, stable and gained, taking the majoritary value across single distribution models (and representing the percentage of models' agreement)
Please see BIOMOD_RangeSize
function for more details about the values.
Other Secundary functions:
bm_BinaryTransformation()
,
bm_CrossValidation()
,
bm_FindOptimStat()
,
bm_MakeFormula()
,
bm_ModelingOptions()
,
bm_PlotEvalBoxplot()
,
bm_PlotEvalMean()
,
bm_PlotResponseCurves()
,
bm_PlotVarImpBoxplot()
,
bm_PseudoAbsences()
,
bm_RunModelsLoop()
,
bm_SRE()
,
bm_SampleBinaryVector()
,
bm_SampleFactorLevels()
,
bm_Tuning()
,
bm_VariablesImportance()
Other Plot functions:
bm_PlotEvalBoxplot()
,
bm_PlotEvalMean()
,
bm_PlotResponseCurves()
,
bm_PlotVarImpBoxplot()
library(terra)
# Load species occurrences (6 species available)
data(DataSpecies)
head(DataSpecies)
# Select the name of the studied species
myRespName <- 'GuloGulo'
# Get corresponding presence/absence data
myResp <- as.numeric(DataSpecies[, myRespName])
# Get corresponding XY coordinates
myRespXY <- DataSpecies[, c('X_WGS84', 'Y_WGS84')]
# Load environmental variables extracted from BIOCLIM (bio_3, bio_4, bio_7, bio_11 & bio_12)
data(bioclim_current)
myExpl <- terra::rast(bioclim_current)
# \dontshow{
myExtent <- terra::ext(0,30,45,70)
myExpl <- terra::crop(myExpl, myExtent)
# }
# ---------------------------------------------------------------#
file.out <- paste0(myRespName, "/", myRespName, ".AllModels.models.out")
if (file.exists(file.out)) {
myBiomodModelOut <- get(load(file.out))
} else {
# Format Data with true absences
myBiomodData <- BIOMOD_FormatingData(resp.var = myResp,
expl.var = myExpl,
resp.xy = myRespXY,
resp.name = myRespName)
# Model single models
myBiomodModelOut <- BIOMOD_Modeling(bm.format = myBiomodData,
modeling.id = 'AllModels',
models = c('RF', 'GLM'),
CV.strategy = 'random',
CV.nb.rep = 2,
CV.perc = 0.8,
OPT.strategy = 'bigboss',
metric.eval = c('TSS','ROC'),
var.import = 3,
seed.val = 42)
}
models.proj <- get_built_models(myBiomodModelOut, algo = "RF")
# Project single models
myBiomodProj <- BIOMOD_Projection(bm.mod = myBiomodModelOut,
proj.name = 'CurrentRangeSize',
new.env = myExpl,
models.chosen = models.proj,
metric.binary = 'all')
# ---------------------------------------------------------------#
# Load environmental variables extracted from BIOCLIM (bio_3, bio_4, bio_7, bio_11 & bio_12)
data(bioclim_future)
myExplFuture <- terra::rast(bioclim_future)
# \dontshow{
myExtent <- terra::ext(0,30,45,70)
myExplFuture <- terra::crop(myExplFuture, myExtent)
# }
# Project onto future conditions
myBiomodProjectionFuture <- BIOMOD_Projection(bm.mod = myBiomodModelOut,
proj.name = 'FutureRangeSize',
new.env = myExplFuture,
models.chosen = models.proj,
metric.binary = 'TSS')
# Load current and future binary projections
CurrentProj <- get_predictions(myBiomodProj,
metric.binary = "TSS",
model.as.col = TRUE)
FutureProj <- get_predictions(myBiomodProjectionFuture,
metric.binary = "TSS",
model.as.col = TRUE)
# Compute differences
myBiomodRangeSize <- BIOMOD_RangeSize(proj.current = CurrentProj, proj.future = FutureProj)
# ---------------------------------------------------------------#
myBiomodRangeSize$Compt.By.Models
plot(myBiomodRangeSize$Diff.By.Pixel)
# Represent main results
bm_PlotRangeSize(bm.range = myBiomodRangeSize)