This function represents response curves of species distribution models, from
BIOMOD.models.out
or BIOMOD.ensemble.models.out
objects that can
be obtained from BIOMOD_Modeling
or BIOMOD_EnsembleModeling
functions. Response curves can be represented in either 2 or 3 dimensions (meaning 1 or 2
explanatory variables at a time, see Details).
bm_PlotResponseCurves(
bm.out,
models.chosen = "all",
new.env = get_formal_data(bm.out, "expl.var"),
show.variables = get_formal_data(bm.out, "expl.var.names"),
fixed.var = "mean",
do.bivariate = FALSE,
do.plot = TRUE,
do.progress = TRUE,
...
)
a BIOMOD.models.out
or BIOMOD.ensemble.models.out
object that can be obtained with the BIOMOD_Modeling
or
BIOMOD_EnsembleModeling
functions
a vector
containing model names to be kept, must be either
all
or a sub-selection of model names that can be obtained with the
get_built_models
function
a matrix
, data.frame
or
SpatRaster
object containing the new explanatory
variables (in columns or layers, with names matching the variables names
given to the BIOMOD_FormatingData
function to build
bm.out
) that will be used to project the species distribution model(s)
Note that old format from raster are still supported such as
RasterStack
objects.
a vector
containing the names of the explanatory variables
present into new.env
parameter and to be plotted
a character
corresponding to the statistic to be used to fix as
constant the remaining variables other than the one used to predict response, must be either
mean
, median
, min
, max
(optional, default FALSE
)
A logical
value defining whether the response curves are to be represented in 3
dimensions (meaning 2 explanatory variables at a time) or not (meaning only 1)
(optional, default TRUE
)
A logical
value defining whether the plot is to be rendered or not
(optional, default TRUE
)
A logical
value defining whether the progress bar is to be rendered or not
some additional arguments (see Details)
A list
containing a data.frame
with variables and predicted values and the
corresponding ggplot
object representing response curves.
This function is an adaptation of the Evaluation Strip method proposed by Elith et al. (2005). To build the predicted response curves :
n-1
variables are set constant to a fixed value determined by the
fixed.var
parameter (in the case of categorical variable, the most represented
class is taken)
the remaining variable is made to vary throughout its range given by the new.env
parameter
predicted values are computed with these n-1
fixed variables, and this
studied variable varying
If do.bivariate = TRUE
, 2 variables are varying at the same time.
The response curves obtained show the sensibility of the model to the studied variable.
Note that this method does not account for interactions between variables.
...
can take the following values :
main
: a character
corresponding to the graphic title
Elith, J., Ferrier, S., Huettmann, FALSE. and Leathwick, J. R. 2005. The evaluation strip: A new and robust method for plotting predicted responses from species distribution models. Ecological Modelling, 186, 280-289.
BIOMOD.models.out
, BIOMOD.ensemble.models.out
,
BIOMOD_Modeling
, BIOMOD_EnsembleModeling
Other Secundary functions:
bm_BinaryTransformation()
,
bm_CrossValidation()
,
bm_FindOptimStat()
,
bm_MakeFormula()
,
bm_ModelingOptions()
,
bm_PlotEvalBoxplot()
,
bm_PlotEvalMean()
,
bm_PlotRangeSize()
,
bm_PlotVarImpBoxplot()
,
bm_PseudoAbsences()
,
bm_RunModelsLoop()
,
bm_SRE()
,
bm_SampleBinaryVector()
,
bm_SampleFactorLevels()
,
bm_Tuning()
,
bm_VariablesImportance()
Other Plot functions:
bm_PlotEvalBoxplot()
,
bm_PlotEvalMean()
,
bm_PlotRangeSize()
,
bm_PlotVarImpBoxplot()
library(terra)
# Load species occurrences (6 species available)
data(DataSpecies)
head(DataSpecies)
# Select the name of the studied species
myRespName <- 'GuloGulo'
# Get corresponding presence/absence data
myResp <- as.numeric(DataSpecies[, myRespName])
# Get corresponding XY coordinates
myRespXY <- DataSpecies[, c('X_WGS84', 'Y_WGS84')]
# Load environmental variables extracted from BIOCLIM (bio_3, bio_4, bio_7, bio_11 & bio_12)
data(bioclim_current)
myExpl <- terra::rast(bioclim_current)
# \dontshow{
myExtent <- terra::ext(0,30,45,70)
myExpl <- terra::crop(myExpl, myExtent)
# }
# ---------------------------------------------------------------#
file.out <- paste0(myRespName, "/", myRespName, ".AllModels.models.out")
if (file.exists(file.out)) {
myBiomodModelOut <- get(load(file.out))
} else {
# Format Data with true absences
myBiomodData <- BIOMOD_FormatingData(resp.var = myResp,
expl.var = myExpl,
resp.xy = myRespXY,
resp.name = myRespName)
# Model single models
myBiomodModelOut <- BIOMOD_Modeling(bm.format = myBiomodData,
modeling.id = 'AllModels',
models = c('RF', 'GLM'),
CV.strategy = 'random',
CV.nb.rep = 2,
CV.perc = 0.8,
OPT.strategy = 'bigboss',
metric.eval = c('TSS','ROC'),
var.import = 3,
seed.val = 42)
}
# ---------------------------------------------------------------#
# Represent response curves
mods <- get_built_models(myBiomodModelOut, run = 'RUN1')
bm_PlotResponseCurves(bm.out = myBiomodModelOut,
models.chosen = mods,
fixed.var = 'median')
## fixed.var can also be set to 'min', 'max' or 'mean'
# bm_PlotResponseCurves(bm.out = myBiomodModelOut,
# models.chosen = mods,
# fixed.var = 'min')
# Bivariate case (one model)
# variables can be selected with argument 'show.variables'
# models can be selected with argument 'models.chosen'
mods <- get_built_models(myBiomodModelOut, full.name = 'GuloGulo_allData_RUN2_RF')
bm_PlotResponseCurves(bm.out = myBiomodModelOut,
show.variables = c("bio4","bio12","bio11"),
models.chosen = mods,
fixed.var = 'median',
do.bivariate = TRUE)