This internal biomod2 function allows the user to create easily a standardized formula that can be used later by statistical models.
bm_MakeFormula(
resp.name,
expl.var,
type = "simple",
interaction.level = 0,
k = NULL
)
a character
corresponding to the response variable name
a matrix
or data.frame
containing the explanatory variables that
will be used at the modeling step
a character
corresponding to the wanted type of formula, must be
simple
, quadratic
, polynomial
or s_smoother
an integer
corresponding to the interaction level depth
between explanatory variables
(optional, default NULL
)
An integer
corresponding to the smoothing parameter value of s
or s
arguments (used only if type = 's_smoother'
)
A formula
class object that can be directly given to most of
R statistical models.
It is advised to give only a subset of expl.var
table to avoid useless memory consuming.
If some explanatory variables are factorial, expl.var
must be a data.frame
whose corresponding columns are defined as factor
.
formula
, s
, s
,
bm_ModelingOptions
, bm_Tuning
,
bm_RunModelsLoop
Other Secundary functions:
bm_BinaryTransformation()
,
bm_CrossValidation()
,
bm_FindOptimStat()
,
bm_ModelingOptions()
,
bm_PlotEvalBoxplot()
,
bm_PlotEvalMean()
,
bm_PlotRangeSize()
,
bm_PlotResponseCurves()
,
bm_PlotVarImpBoxplot()
,
bm_PseudoAbsences()
,
bm_RunModelsLoop()
,
bm_SRE()
,
bm_SampleBinaryVector()
,
bm_SampleFactorLevels()
,
bm_Tuning()
,
bm_VariablesImportance()
## Create simple simulated data
myResp.s <- sample(c(0, 1), 20, replace = TRUE)
myExpl.s <- data.frame(var1 = sample(c(0, 1), 100, replace = TRUE),
var2 = rnorm(100),
var3 = 1:100)
## Generate automatic formula
bm_MakeFormula(resp.name = 'myResp.s',
expl.var = head(myExpl.s),
type = 'quadratic',
interaction.level = 0)